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Introduction - suspensions

minute particles in liquid

milk, blood,...

Liquid.:
-temperature
-VISCOSIty

-density of the fluid

Particles:

-radius

-density of material
-volume fraction



Aim of our work

Monodisperse suspension
of spherical particles

- 0. ® 3

Transport properties (short time):
-effective viscosity
> -sedimentation coefficient
-diffusion coefficient

Over 100 years of research - still an open question
The most comprehensive method nowadays: Beenakker-Mazur method

To assess Beenakker-Mazur method in case of e.g.
rotational self-diffusion or effective viscosity coefficient for
suspension of repulsive particles by comparison with
numerical simulations

Comments on polidispersity or nonspherical particles



Hard-sphere suspension

Unbounded liquid,

N particles in configuration X = R, ...
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Stokes equations:
Vp(r)—nAv(r) = 0
V.v(r) = 0

Stick boundary conditions,

v(r) — vo(r) for 7 — oo



Effective viscosity

Landau: effective viscosity related to force on the surface of particles

fi(r) = —o(r; X)id(r)o(|r — R;| — a)

stress tensor |

vector normal to the
surface of particle 2




Single particle
Lamb (1895) Vi, (r)

l — 17 27 Y
Single particle in ambient flow v (r) m= ks 1

f; (r) :/dr’l\/I (r — Ry, r' — Ry) vo (')

—_— \
/ Single particle operator
(Felderhof 1976)

Surface force density
(Cox Brenner (1967); Mazur, Bedeaux (1974))
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Oseen tensor:
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Suspension — -7

Single particle problem with modified ambient flow

f; = M(i) | vo+ » Gf;
7]

Solution in the form of the following scattering series
(hydrodynamic interactions)

f, = (M(z’) + ) M@EHGM() + > > M(i)GM(j)GM(k) + ...

J7i J7#i k#]

)VO



Scattering series

fi< (1) + ) M(H)GM() + > > M(i))GM(j)GM(k

JF1 J#i k#j

A f /
oy iy
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Transport properties — history and scattering series

Einstein 1905
(corrected):

H
Nefr = n(1+ 5@ 4
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Hydrodynamic interactions neglected (no
B _ reflections, single particle)



Hydrodynamic interactions — Smoluchowski (1911)

gravity field

+ + 4 +
9 @
/d3r|G(r)| = o0
G(r) = 1 1+rr
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Well defined expression for effective viscosity?
Problem solved by Felderhof, Ford and Cohen (1982)



Beyond diluted suspensions

Saito (1950):

-extension of Einstein work on a mean-field level

@+ + +

M(#)GM(j) — W(R; — R;)M(1)GM(j)

vanishes when two particles overlap

Saito formula: Ne f 1+ =




Two-particle hydrodynamic interactions (1972)
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(strong hydrodynamic interactions of close particles - lubrication)

absolute convergence / d37° | G | —
Batchelor, Green (1972): a9 ~ 5.2

(ad hoc renormalization)



Beenakker-Mazur method (1983)

Idea of the method — resummation of certain class of
hydrodynamic interactions — 'ring-selfcorrelations'

a)

b)

No correlations in position between
particles in the above resummed terms

C)

single-particle

| response
| renormalized




Resummation of ring-self correlations

Beenakker and Mazur introduce a kernel of a single particle operator

MR, R:X)=06(R-R) ZM 0(R —Ry)

1=1

Ring-selfcorrelations: ﬁ
G (R,R) for R=R/
Gz (R,RY) = { M) ; \



Beenakker-Mazur method (1983)

Beenakker-Mazur represented the scattering series
M(i) + Y M@E)GM() + Y Y M(i)GM(j)GM(k) + . ..
j#i JF#t k]

by the following equivalent form (expansion in renormalized fluctuations)

d

- —1
M+ MGy [1 = (M — (MR) G| Mn

Delta gamma scheme (Beenakker Mazur method): the above expression up to
second order in fluctuations, averaged over configurations of particles

<M + MG pyMR + MG p ) (MR — (MR)) é(MR>MR>



Beenakker and Mazur scheme

Beenakker and Mazur scheme — expansion in density fluctuations (1983).
The most comprehensive statistical physics theory for short times
properties of suspension nowadays

‘/ Many-body character

7
\/ Long-range character s
7

x Strong interactions of close particles + ...

e

No satisfactory statistical physics method including the above three
features (still an open problem)

Propagator does not depend on correlations (rdf)

- —1
M+ MGy [1 = (M — (MR) G| Mn

How interactions (e.qg. electrostatic) influence results of Beenakker-Mazur method?

Check for rotational self-diffusion coefficient...



Yukawa-hard core repulsive potential

/ screening length
f

wu(r) . %e)‘e_)"'"/“")@ for r > 2a

kBT: o0 r < 2a

\

For constant )\ , the limit of hard sphere is for T — OO

Equilibrium phase diagram:
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Radial distribution function

Radial distribution function calculated by Rogers-Young scheme
(results similar to Monte Carlo calculations)

Repulsion decreases number of close pairs in the system

g(r)
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Rotational self-diffusion coefficient for repulsive particles by

Beenakker-Mazur method

reduced rotational self-diffusion DZ;’DF{,

$=0.35
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Effective viscosity coefficient for repulsive particles by Beenakker-
Mazur method
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Summary

sResults of BM qualitatively agrees with results of numerical simulations
s\Weak dependence of BM on structure of suspension

Ongoing research in colaboration with:

Gerhard Né&gele Gustavo Abade Marco Heinen
Research Centre Jiilich Universitat Konstanz Caltech

Important contribution: Eligiusz Wajnryb
Polish Academy of Sciences



Future perspectivies for Beenakker-Mazur scheme

In second order BM approach transport properties are given
In terms of the following expansion:

~

(M + MG iy M + MG pgy (M = (M) Gty M)

Straightforward generalization to:

-different spherical particles (permeable, mixed slip-stick b.c.)
-polidisperse systems

-nonspherical particles

-friction problem (chemical reactions?)

BM approach more sensitive to change of type of particles than to
change of structure (rdf)?



Treloar, Masters (1989)

Y10 Numerical simulations

T S (G. Abade)
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| 07y (Treloar, Masters)
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Figure 1. A plot of the normalized single particie rotational mobility, u$*/ub®, calculated to
second order in the dy-expansion, against volume fraction, ¢.
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