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Transient dynamics in the outflow of energy from a system in a nonequilibrium stationary state
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We investigate the thermal relaxation of an ideal gas from a nonequilibrium stationary state. The gas is
enclosed between two walls, which initially have different temperatures. After making one of the walls adiabatic,
the system returns to equilibrium. We notice two distinct modes of heat transport and associated timescales: one
connected with a traveling heat front and the other with internal energy diffusion. At the heat front, which moves
at the speed of sound, pressure, temperature, and density change abruptly, leaving lower values behind. This is
unlike a shock wave, a sound wave, or a thermal wave. The front moves multiple times between the walls and is
the dominant heat transport mode until surpassed by diffusion. We found that it can constitute an order 1 factor
in shaping the dynamics of the outflow of internal energy. We found that cooling such a system is quicker than
heating, and that hotter bodies cool down quicker than colder ones. The latter is known as the Mpemba effect.
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I. INTRODUCTION

According to Fourier’s law, a temperature gradient induces
heat flow [1–5]. Most heat transport studies (if convection and
radiation are neglected) are based on the parabolic equation of
heat diffusion, which is a consequence of Fourier’s law [6].
However, this theoretical framework cannot always describe
heat transfer in a very small scale of time and space. For
fast processes where the response of the medium takes place
on a similar timescale to the energy transport, thermal waves
can be generated [7–12]. In such situations, there will be a
time delay between the appearance of the temperature gra-
dient and the establishment of the heat flux, resulting in an
oscillatory relaxation. When it comes to small lengthscales,
e.g., if the sample is smaller than or comparable to the mean
free path of phonons or particles [13], ballistic heat transport
can take place, leading to an increase in heat flux [14–16].
Even more possibilities of energy transport are encountered
in a compressible fluid. There, the energy can be transported
via sound waves [17,18], where the alternating contractions
and retractions of gas move at the speed of sound, carrying
the kinetic energy of the oscillating movement of the gas and
the associated changes in the internal energy. Shock waves
can also propagate in compressible fluids [18–20]. These are
moving surfaces of discontinuity of the thermodynamic pa-
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rameters (pressure, density, temperature, entropy) with a gas
velocity normal to the surface.

In the present paper, we uncover still another mode of heat
transport by considering a macroscopic system: an ideal gas
confined between two planar walls. Initially, the gas is in a
nonequilibrium stationary state due to different temperatures
at the two walls. The relaxation process begins as one wall
suddenly becomes adiabatic (the temperature gradient on that
wall is set to zero). Using the laws of conservation of mass,
momentum, and energy [21], we study the flow of the internal
energy inside the system and into the surroundings in response
to this sudden change. Interestingly, we discover that if the
hotter wall is set adiabatic, up to 10% of internal energy is
removed from the system via the front moving at the local
speed of sound and against the pressure gradient. This front
reflects from the walls multiple times, and during each pas-
sage the system’s internal energy is lowered by a quantized
amount. Moreover, we find the asymmetry between relaxation
to equilibrium via cooling or heating, i.e., cooling after the
hotter wall becomes adiabatic progresses faster than heating
after the colder wall becomes adiabatic. For an otherwise
identical system, the one with a higher initial temperature at
the hotter wall cools down quicker. We argue that this acceler-
ated cooling and the observed asymmetry of relaxation are a
consequence of the relationship between the amount of energy
stored in the steady state and the heat flux flowing through
the system in this state. The quicker cooling from the hotter
system is known as the “Mpemba effect” [22,23]. In the case
of microscopic systems, the Mpemba effect was demonstrated
both experimentally and theoretically [24–29]. The crucial
difference here is that the systems considered in Refs. [24–29]
were initialized in a state that was thermally equilibrated,
whereas we initialize the system in the nonequilibrium steady
state where heat flux is present. Another interesting example
of the importance of initial conditions in relaxation has
been recently found in systems undergoing reversible
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FIG. 1. The model. (a) Initial conditions are set by the nonequi-
librium stationary state. (b) Boundary conditions out of a nonequi-
librium stationary state.

overdamped diffusion in single-well potentials [30,31]. Sub-
jected to equidistant temperature quenches, these systems
show asymmetry in relaxation: for a pair of thermodynam-
ically equidistant temperature quenches, one from a lower
and the other from a higher temperature, the relaxation at
the ambient temperature is faster in the case of the former.
Again, this situation is different from the one considered in
the present paper.

II. MODEL AND METHODS

We consider an ideal gas contained between parallel, in-
finite planes separated by the distance L in the x direction
(Fig. 1). The space between walls is filled with N moles of
monatomic ideal gas per unit surface area.

Initially, the system is prepared in the quiescent, nonequi-
librium stationary state [Fig. 1(a)] in which the wall at x = 0
is kept at temperature T0, and the wall at x = L is kept at
temperature T1 = T0 + dT

dx L, where dT
dx is the prescribed tem-

perature gradient. The initial stationary profiles are as follows:
Tst(x) = T0 + dT

dx x for temperature, pst = p0� for pressure
with

� = dT

dx

L

T0

[
ln

(
1 + dT

dx

L

T0

)]−1

, (1)

ρst(x) = ρ0�/(1 + dT
dx

x
T0

) for density, and vst = 0 for velocity
(in the x direction). The total internal energy of the system
per unit area is Ust = U eq

0 �.ρ0 = M p0/(RT0) is the density
of equilibrium monatomic ideal gas at temperature T0 and
pressure p0, where R is the gas constant and M is the molar
mass. U eq

0 = 3R
2M Lρ0T0 is the corresponding total equilibrium

internal energy per unit area. None of the above depend on
transport coefficients, i.e., viscosities μ, λ or thermal conduc-
tivity κ . However, in a stationary state, a constant heat flux
Jst = −κ dT

dx is present, which depends on κ .
We assume local thermodynamic equilibrium, which in

one dimension is valid even in a condition as extreme as
a blast [32–37]. In higher dimensions, local equilibrium is
valid in the case of dilute gases with negligible interactions.
Otherwise, a more appropriate form of conservation laws
and equations of state should be considered. We model gas
dynamics using the dimensionless (see Appendix A) set of
mass, energy, and momentum conservation equations [21]
(Appendix D),

∂tρ + ∂x(vρ) = 0, (2a)

ρ[∂tv + ∂xv
2] = −3

5
∂x p +

(
λ
μ

+ 2
)

Re
∂2

x v, (2b)

∂t (ρu) = −∂x(ρuv) − 2

3
p∂xv

+
10

(
λ
μ

+ 2
)

9 Re
(∂xv)2 + 1

Pr Re
∂2

x T, (2c)

together with dimensionless ideal gas equations of state,

p = ρT, u = T, (2d)

which can be used to substitute temperature T for internal
energy density u in conservation laws. Re and Pr are Reynolds
and Prandtl numbers, respectively (see Appendix A). The
space coordinate is scaled with the system size L, density ρ

is scaled with ρ0, and T0 sets the scale for temperature T . We
choose to scale time t with τc = L/c0, where c0 is the speed
of sound at T0. Another timescale naturally appearing in the
problem is associated with thermal diffusion, τd = 3L2 p0

2κT0
. It

depends on the transport coefficient κ as opposed to τc. The
relation between timescales τc and τd is given by Eq. (A1)
in Appendix A. We use both timescales depending on the
analyzed phenomena: τc is the appropriate timescale for ther-
mal front analysis, while τd is a better choice for describing
the thermal relaxation of the system lasting longer than τc.
We focus on the situations when τc � τd , and we provide an
example of what happens when this condition is not satisfied
(Appendix C). The further discussion features dimensionless
quantities only. The dimensionless parameters used in our
numerical calculations can be expressed as ratios of dimen-
sional quantities, which can be inferred from observables of
a physical realization of the system under consideration—see
Appendix A. Our choice gives τd/τc = 6 × 103 so that both
timescales are well separated.

We performed numerical simulations with the OPENFOAM
library for solving partial differential equations with the finite
volume method [38–40]. We provide the necessary resources
to reproduce the results (Appendix D). To ensure that the
presented results are numerically accurate, we performed time
integration for two time steps that differ tenfold and obtained
indistinguishable results. Moreover, an agreement with the
presented analytical solutions shows that the problem is also
correctly resolved in terms of spatial dependencies.

III. CHANGES IN INTERNAL ENERGY

A. Approximations and full solution

The system is set out of nonequilibrium stationary state by
changing the boundary conditions (b.c.) at the hotter wall from
the fixed temperature T1 = 1 + dT

dx to adiabatic b.c. dT
dx |x=1 =

0 [Fig. 1(b)], which physically means ceasing the heat influx.
In response, the heat outflux (set by the temperature gradient)
through the colder wall does not change immediately, because
information about events happening at the hotter wall needs
time to reach the other wall. The total internal energy in the
system at time t is

U (t ) =
∫ 1

0
u(t )ρ(t )dx. (3)

However, it is more convenient to discuss Ust − U (t ), which
is the energy outflowing from the system at time t normal-
ized with excess energy (over the equilibrium one U eq

0 ) of
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U∗ = U(t)
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FIG. 2. Internal energy as a function of time. (a) The solid black
line shows the constant flux approximation, the blue extended dashed
line shows the constant density approximation, the magenta short
dashed line shows the constant pressure approximation, and the red
dotted line shows the full solution results. The upper time axis shows
time in units of τd . (b) Ratio of outflown internal energy due to
the constant flux approximation to the full solution. (c) Asymmetry
between energy influx and outflux. The difference between instanta-
neous dearth and excess energy in the heating and cooling process to
different end temperatures but with the same initial temperature gra-
dient (dashed red line) as compared to the case of heating and cooling
to the same end temperatures but with different initial temperature
gradient and Uda′ = Uex (solid black line). (d) Difference between
relative outflown energy �(t ) for temperature gradients 2 dT

dx and dT
dx .

Parts (c) and (d) are results of the full solution.

the stationary state Uex = Ust − 1 (in units of U eq
0 ) [41,42]

[Fig. 2(a)]. With such a choice of normalization, Ust − U (t )
varies between 0 and 1.

We calculate the total internal energy U (t ) from Eq. (2)
numerically and make a comparison with results obtained
using three different approximations. The first is the stationary
flux approximation, according to which the energy change
when approaching equilibrium is governed by the (constant)
heat flux at the initial stationary state, i.e.,

dUJ

dt
= −Jst, U (t = 0) = Ust → UJ = Ust − Jstt . (4)

As one can expect, this linear decrease in energy is valid
at the beginning of the relaxation process. The other two
approximations are based solely on diffusive heat transport.
The solution Uρ (t ) assumes constant density equal to ρ0 and
no flow, v = 0. Under this assumption, Eqs. (2) reduce to
a simple heat conduction problem, which has an analytical
solution [6]. The other solution is Up(t ), which assumes only
v = 0 (Appendix D) resulting in p = const. in each time in-
stant. Within this approximation, the system is always able
to relax to the state with a nonuniform density profile. In
the presented example involving base parameters, Uρ (t ) and
Up(t ) are indistinguishable until roughly 0.3τd , when half of
the excess heat left the system. We observe that in the purely
diffusive scenario, the heat flow is indistinguishable from the
linear one, as long as the changes in the temperature profile
due to diffusion remain insignificant on the colder wall. Both

approximations follow the stationary flux approximation until
roughly 0.15τd , when 30% of excess heat has already left the
system. The full solution U (t ) of Eq. (2) diverges from the
stationary flux approximation at τc [Fig. 2(b)] and gradually
deviates from diffusive approximations. The difference is 10%
in absolute excess heat after 0.5τd [see Fig. 2(a)], which
corresponds to approximately 20% relative difference. The
presented numerical values depend on the system’s parame-
ters, i.e., they increase with dT

dx .

B. Asymmetries and Mpemba effect

One can stop the heat flux also at the colder wall, which
raises a question about the symmetry between heating and
cooling processes. Again, the perfect gas is initially between
temperature 1 and T1. If the hotter wall is set adiabatic, the
system will cool down to the temperature of 1, and the total
excess energy, which will flow out of the system, is

Uex = Ust − 1 = T1 − 1

ln [1 + (T1 − 1)]
− 1. (5)

It is not the same as the total dearth energy,

Ude = U eq
1 − Ust = T1

(
1 − (1 − T1)/T1

ln [1 + (1 − T1)/T1]

)
, (6)

which will flow into the system when the colder wall is set adi-
abatic and the system will heat up to the temperature of T1. U eq

1
denotes the equilibrium energy at temperature T1. Because the
logarithm is convex, Uex < Ude. For the heating process we
define the instantaneous dearth Ude(t ) = U (t ) − Ust energy,
and for the cooling process we define the instantaneous excess
Uex(t ) = Ust − U (t ) energy. Next, we consider a difference
	U of these energies (normalized with stationary excess en-
ergy Uex) as a function of time. The dashed line in Fig. 2(c)
shows 	U calculated for the base set of parameters. It grows
slowly due to a mismatch between total excess and dearth
energies. The initial vanishing slope indicates that both pro-
cesses proceed at the same pace at the beginning. This is
because the initial gradient is the same for both cases. The
end value is 	U ≈ 0.56%. Additionally, cooling is faster than
heating. It takes the base system 2.43τd to expel 99.5% of
Uex. If we make the colder wall adiabatic, it takes 2.44τd

to intake 99.5% of Ude. Thus, the relative time difference
is 0.01/2.43 ≈ 0.4% at the moment of 99.5% excess heat
outflux. This difference increases with an imposed initial tem-
perature gradient.

It is also interesting to compare times of cooling and
heating to the same end temperature (equal to 1) when the
excess energy is equal to the dearth energy. For this purpose,
we consider a second system, in which the hotter wall has
temperature 1 and the temperature at the colder wall T ′

0 is
adjusted such that the dearth energy U ′

de that will enter the
system after making this wall adiabatic is equal to Uex given
by Eq. (5). One can show that T ′

0 has to satisfy

1 − T ′
0 − 1

ln[1 + (T ′
0 − 1)]

= T1 − 1

ln[1 + (T1 − 1)]
− 1. (7)

The solution has the general property that 1 − T ′
0 < T1 − 1.

Therefore, the initial temperature gradient, and hence the heat
flux, are smaller in this (cooler) stationary state (with the
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energy U ′
st) as compared to the previously considered station-

ary state. In Fig. 2(c) we show by the solid line the difference
	U between the instantaneous dearth and excess energies for
this case. For the base set of parameters, T ′

0 = 288.028, which
gives the heat flux in the stationary state that is 0.56% smaller
than the heat flux in the stationary state of the previous system.
This is why we observe an initial decrease of 	U for U ′

de(t ).
At the end of the relaxation process, 	U goes to 0. Finally,
for this colder system it takes 2.45τd until 99.5% of U ′

de is
reached, which is longer than it takes the base system (2.43τd )
to expel 99.5% of Uex.

In summary, if the temperature gradient in the initial steady
states is the same, then the energy difference between the
steady state and the final equilibrium (at different temper-
atures) controls the energy relaxation rate, i.e., the smaller
this difference is, the faster is the process. If, on the other
hand, the temperature gradients in the initial steady states are
different, but the final equilibrium temperature is the same
and, furthermore, the energy differences between the steady
state and equilibrium are the same, the initial temperature
gradient regulates the energy relaxation rate, i.e., the larger
the gradient is, the faster is the relaxation process.

Next, we comment on the cooling rate as a function of the
initial temperature gradient in relation to the Mpemba effect.
We notice that Uex = � − 1 grows slower than linear with
dT
dx while the heat flux initially flowing through the system
− 1

Pr Re
dT
dx is linear in dT

dx . This suggests that the analog of the
Mpemba effect might occur. We introduce

�(t ) = U (1)(t ) − U (1)
st

U (1)
ex

− U (t ) − Ust

Uex
, (8)

a difference between relative energies flowing out from the
system during cooling [Fig. 2(d)] for two different initial tem-
perature gradients. Here, the superscript “(1)” denotes values
for the system initiated with 2 dT

dx and otherwise the same as
the base system. We can see a small but persistent positive
value of this function, which indicates that the hotter system
(with a larger initial temperature gradient) cools faster.

C. Timescale analysis

As already pointed out [Fig. 2(b)], a deviation between
the stationary approximation and the full solution occurs on a
timescale comparable with τc. Immediately after changing b.c.
on the hotter wall, a simultaneous appearance of diffusion ef-
fects and a traveling front can be seen in the temperature pro-
file [Figs. 3(a) and 3(b)]. The diffusive process builds a grad-
ual deviation from the stationary profile, which propagates
from the hotter wall. At the same time, the traveling front low-
ers the temperature throughout the system by a small amount
compared to the local field values in the stationary state.

For times longer than τc, the heat outflux differs from the
stationary approximation [Figs. 2(a) and 2(b)], which must
follow from the change in dT

dx at the colder wall. This change
cannot be caused by diffusion because this process is too slow
to reach this wall so early in time. What we observe is the
traveling front, which reflects multiple times from the walls
and by each reflection reduces the temperature in the entire
system by a small value. As a result, in the central part of the
system, the temperature profile shifts downwards [Fig. 3(c)
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FIG. 3. Temperature profiles from the full numerical solution.
On short timescales: (a) with respect to equilibrium temperature
normalized with the temperature change dT

dx in a stationary state,
(b) with respect to Tst(x). On longer timescales: (c) with respect to
to equilibrium temperature normalized with the temperature change
dT
dx in a stationary state, (d) with respect to Tst(x). The green triple
dotted line illustrates the range of diffusion xd .

and right inset]. Spanning from the walls, there are two parts
of the system, which enlarge in time, showing a qualitative dif-
ference in behavior [Fig. 3(d)]. In part near the cold wall, the
temperature approaches 1 with a slope smaller than the slope
of the initial linear stationary profile [upper inset in Fig. 3(c)].
The part near the adiabatic wall shows a different deviation
from the initially linear profile attributed to classical Fourier
heat diffusion. For illustration purposes, we plotted a parabola
showing the range of diffusion xd ∝ t1/2, with a numerically
determined proportionality coefficient. This visualization is
possible as each front transition, to an excellent approxima-
tion, lowers the temperature profile by a constant value in τc.

IV. HEAT FRONT

A. General case

To analyze the traveling front, we postulate the solu-
tion in the following form (as suggested by the results of
numerical simulations): p(x) = pst + p̃(x), T (x) = Tst(x) +
T̃ (x), ρ(x) = ρst(x) + ρ̃(x), and v(x) = ṽ(x), which includes
small perturbations f̃ � fst to the stationary state. We have
solved (details in Appendix B) to the leading order Eq. (2)
for small perturbations that have the form of a traveling front,
f̃ (χ ) = f̃ (x + vwt ). The front propagation velocity vw is in
the negative direction along the x axis, as in the simulations.
We have found that for large Re,

vw = c∗ =
√

pst

ρ∗
st
, (9)

which is the speed of sound c∗ at the position of the front
x∗, and ρ∗

st is the stationary density at x∗ (see Appendix B).
Moreover, to the leading order, changes in pressure, density,
temperature, and velocity are related by

ρ̃

ρ∗
st

= 3

5

p̃

pst
= 3

2

T̃

Tst
= − ṽ

c∗ . (10)
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FIG. 4. Pressure and velocity profiles upon reflection obtained
from the full numerical solution. (a) Pressure profile motion down-
stream heat flux before reflection at the wall. (b) The same as in
(a) for the velocity profile. (c) Pressure profile motion upstream heat
flux after reflection. (d) The same as in (b) for the velocity profile.

To demonstrate an excellent agreement between numerical
results and analytically obtained relations (10), we quote the
values obtained in numerical simulations for t = 0.9 and
x = 0.5 normalized in the same way as in relations (10):
T − Tst = 1.11 × 10−6 (which corresponds to T̃

Tst
), p − pst =

2.75 × 10−6, ρ − ρst = 1.64 × 10−6, and v = 1.65 × 10−6.
We supplement the profiles for temperature [Fig. 3(b)] with

pressure and velocity profiles [Figs. 4(a) and 4(b)]. Upon
reaching the wall, the pressure, temperature, and density pro-
files behave alike. Before contact, the front propagates in the
direction of heat flux [Fig. 4(a)] leaving behind the gas in
motion ṽ �= 0. After reaching the wall, the front reflects and
propagates back, maintaining the jump magnitude [Fig. 4(c)]
and bringing gas to rest again. With constant pressure, linear
temperature profile, and zero velocity, the gas is again in a
nonequilibrium stationary state, however different from the
initial one. The situation repeats itself, resulting in a stepwise
lowering of the profiles of thermodynamic parameters. At the
same time, we observe that gas is alternately either at rest or
moving [Figs. 4(b) and 4(d)]. The velocity of the gas is small
in comparison with the speed of sound, which means that the
kinetic energy density ρv2

2 is minuscule in comparison to the
thermal energy density ρu = 3p

2 .
We note that the leftmost equation (10) is a characteristic

feature of the adiabatic process dρ

ρ
= 3

5
d p
p for a monatomic

ideal gas at fixed mass. This means that there is no change
in entropy at the front. Indeed, the increment of the entropy
(per mass density) s̃ across the front can be calculated using
the expression for the change in entropy of an ideal gas (per
mass) as follows:

R

M

(
5

2
ln

Tst + T̃

Tst
− ln

pst + p̃

pst

)

= R

M

(
5

2
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Tst
− p̃

pst

)
+ · · · . (11)
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FIG. 5. Energy fluxes � normalized with stationary heat flux
1

Pr Re
dT
dx . Solid lines correspond to the � = − p̃c∗ component and

dashed lines to the � = − 5
3 pstṽ component at consecutive time

instances [see Eqs. (12) and (14)]. (a) Flux profiles before reflection
at the wall. (b) Flux profiles after reflection at the wall plotted with
respect to the state after the first front passage.

Thus, to the leading order we have ( 5
2

T̃
Tst

− p̃
pst

) = s̃ and con-
sequently s̃ = 0.

Although the relations between changes in pressure, den-
sity, and entropy over the front are typical for the adiabatic
process, in which there is no exchange of heat with sur-
roundings, we observe the opposite, namely a depletion of the
internal energy of the system. This depletion drives the front,
leaving behind lower temperature, pressure, and density. Such
behavior is unlike sound waves [17] or shock [18–20,43,44],
where the energy is conserved during the transition of the
disturbance.

Based on our numerical solution, we made an interesting
observation regarding the relation between the change of the
internal energy density ρu − ρstust at the front and the nega-
tive change of heat flux (from the stationary value − 1

PrRe
dT
dx to

0), which we enforced by modifying b.c. This relation can be
written as

− 1

Pr Re

dT

dx
= p̃c∗. (12)

We confirm this observation by reconstructing the front an-
alytically for a special case below. Equation (12) can be
interpreted as the equality of propagation speeds of informa-
tion about the change in flux and its effect.

As a consequence of the equality (12), after passing of the
front, the total internal energy flux should be equal to zero.
Thus, in order to satisfy the energy conservation given by
Eq. (2c), the flux that is supported by the local temperature
gradient behind the front has to be balanced by other types of
fluxes acting in the opposite direction:

1

Pr Re

dT

dx
= ρT v + 2

3
pv. (13)

After expanding to the leading order and utilizing the consti-
tutive relations, we find

1

Pr Re

(
dT

dx
+ ∂xT̃

)
= 5

3
pstṽ. (14)

In this way, we obtained the relation between ṽ, ∂χ T̃ (∂χ =
∂x), and dT

dx behind the front. Often the ∂χ T̃ term can be dis-
carded as introducing smaller order correction to ṽ. The heat
flux decomposition into two components before reflection
from the wall is illustrated in Fig. 5(a). The increase in internal
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FIG. 6. Finite and infinite setup equivalent for t < τc. (a) Finite
system initialized in the equilibrium state, with heat flux introduced
at the boundary. (b) Infinite system initialized in the equilibrium state
with heat flux introduced as a point source.

energy density multiplied by the front velocity equals the sta-
tionary heat flux. At the same time, the convected energy has
the same magnitude and the opposite direction and leaves zero
net flux of internal energy behind the front. The front, moving
in the direction of heat flux, leaves gas flowing in the opposite
direction, which is impossible if the front is adiabatic in the
same sense as shock or sound waves (fluid mechanics [18]).
After reflection, the front again lowers all thermodynamic
parameters by a discrete amount [Fig. 5(b)]. In the leading
order, changes introduced by the second swipe are the same as
in the first one. The gas is immobilized in a process symmetric
to the initial front passage, and flux of internal energy is again
supported primarily by heat flux while convective processes
cease. Thus, the macroscopic movement of gas results from
heat flux balance satisfying energy conservation. Because of
linearity, the presented results are valid for an arbitrary change
in heat flux, which we illustrate in Appendix C.

B. Special case and hydrodynamic modes

We investigate the properties of the front in more detail
by analyzing analytically a special case when the system
is initially in equilibrium: with T0 = T1 = 1, ρ0 = ρ1 = 1,
and p0 = p1 = 1 as shown in Fig. 6(a). We introduce a
constant heat flux J = − 1

PrRe
dT
dx to the system by setting a

fixed nonzero gradient of temperature dT
dx at the wall at x = 0.

We are interested only in the front properties. Therefore, we
map a finite system with a flux at the boundary into a one-
dimensional infinite system with a heat source 2δ(x) 1

PrRe
dT
dx at

the center of the reference frame, where δ(x) is Dirac’s delta
distribution [Fig. 6(b)]. The multiplication by 2 results from
heat flux going to both sides of the point source compared
to a single side for the wall. For such a configuration, the
linearized Eqs. (2) become

∂t ρ̃ = ∂x ṽ − δ(x)
2

Pr Re

dT

dx
, (15a)

∂t ṽ = −3

5
∂x p̃ + 4

3 Re
∂2

x ṽ, (15b)

∂t p̃ = −5

3
pst∂xṽ + 1

Pr Re
∂2

x ( p̃ − ρ̃ ) + δ(x)
2

Pr Re

dT

dx
.

(15c)

For the small disturbances around the equilibrium, we substi-
tuted the temperature change with the pressure change minus
the density change according to the equation of state. Equa-
tions (15) can be solved using a Fourier transform in space (q

is the conjugate of x), which is standard procedure when dis-
cussing hydrodynamic modes (see [45], Chap. 5). The novelty
comes from the heterogeneous component, which fortunately
allows for full analytical solution. It is spanned by the classical
hydrodynamic modes: heat diffusion and damped sound wave
propagation. They correspond to the following eigenvectors:

φ1 =
⎛
⎝1

0
0

⎞
⎠, φ2 =

⎛
⎝ 1

1
5/3

⎞
⎠, φ3 =

⎛
⎝ 1

−1
5/3

⎞
⎠, (16a)

and eigenvalues

λ1 = − 3

5 Pr Re
q2, λ2,3 = −q2

ξ
∓ iq, ξ = 15 Pr Re

(10 Pr +3)
.

(16b)

The coordinates in the vector space are (ρ̃, ṽ, p̃). From the
structure of eigenmodes, we can see the timescale ξ at which
viscous damping will blur the front. It acts quicker than ther-
mal diffusion, but for small and moderate Prandtl numbers it
is comparable. For a finite system, this suggests that on the
timescale of thermal diffusive relaxation, the size of the front
will become comparable to the size of the system. We now
understand why we observe the front for hundreds of swipes in
our numerical example. We deliberately chose parameters to
pronounce timescale separations between diffusion and sound
propagation.

The full solution to Eq. (15) is

�(x, t) = c1φ1 f1(x, t ) + c2φ2 f2(x, t ) + c3φ3 f3(x, t ) (17a)

with the following coefficients:

c1 = −4

5
, c2 = 3

5 Pr Re

dT

dx
, c3 = 3

5 Pr Re

dT

dx
(17b)

multiplying eigenvectors and functions

f1(x, t ) = Pr Re

6

[
5x erf

(
x

2

√
5 Pr Re

3t

)

+ 2

√
15t

π Pr Re
e− 5 Pr Rex2

12t − 5x

]
, (17c)

f2(x, t ) = 1

2

[
erfc

(√
ξ

2

(x − t )√
t

)
− eξxerfc

(√
ξ

2

(x + t )√
t

)]
,

(17d)

f3(x, t ) = 1

2

[
e−ξxerfc

(√
ξ

2

(x − t )√
t

)
− erfc

(√
ξ

2

(x + t )√
t

)]
.

(17e)

The erf(z) = 2√
π

∫ z
0 e−ζ 2

dζ is the error function and erfc(z) =
1 − erf(z) is the complimentary error function. We show an
excellent agreement of the heat front profiles obtained by the
Fourier transform with the results of numerical simulations
of the system with base parameters in Figs. 7(a)–7(d). From
the linearity of the governing equations, we can say that our
findings for the special case can be directly mapped to the
stationary case discussed in the previous section as long as
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FIG. 7. Comparison of analytical (solid line) and numerical
(circles) solutions for three time instances (0.3τc, 0.6τc, 0.9τc):
(a) temperature, (b) pressure, (c) density, and (d) velocity.

the linearization procedure does not introduce significant er-
rors. We discuss the front properties as a function of system
parameters in Appendix C. In Appendix C, we also compare
the situation when the system is driven out-of-equilibrium by
setting a nonzero value of the temperature gradient on one
wall with the situation in which the temperature on one wall
is different from that on the other. We point out the significant
differences between the solutions for these two situations.

V. CONCLUSIONS

We analyzed the heat transport in ideal gas during ther-
mal relaxation from a nonequilibrium stationary state after
turning off the heat flux (Fig. 1). We found a new mode of
heat transport, which is present in addition to the diffusive
temperature spreading [46], a front traveling with the local
speed of sound (9). It reflects from the system’s boundaries
and upon each transition simultaneously decreases [cooling,
Figs. 3(b) and 4] or increases (heating) all three thermody-
namic parameters: temperature, density, and pressure without
changing the entropy (11). Strangely, for cooling, the front
travels toward higher pressure. During the front’s transition,
the gas undergoes a process similar to the adiabatic process
but driven by the heat outflow. This is unlike sound waves
[17] or shock [18–20,43,44]. The observed front is not a
form of ballistic heat transport as no particles or phonons are
involved. Also, the front is not a heat wave [47,48], which
decays exponentially over a characteristic lengthscale. We de-
rive the analytical structure of the front [Eqs. (17)] to stress the
difference between waves, shocks, and ballistic heat transport
reported in the literature to date. The essential feature is the
change in the heat flux passing through the system. The front
structure is similar to the reaction-diffusion systems and not
for wave or diffusion equations.

The front causes large parts of the system to transit between
well-separated (quantized) stationary states. The distance be-
tween those states in the space of thermodynamic functions
can be determined to the leading order by comparing the
change in the heat flux with the change in local energy density

propagating with the local speed of sound [see Eq. (9)]. The
swipes of the front induce high-frequency oscillations in the
gas velocity [Figs. 4(b) and 4(d)] that have a small mag-
nitude compared to the speed of sound (10). Consequently,
every change in heat flux necessarily leads to macroscopic gas
movement. We propose an interpretation of the front velocity
as the heat velocity in the ideal gas.

As time approaches τd , diffusion becomes the dominant
mode of changes in the system [Figs. 2(a) and 3(d)]. Be-
fore that happens, the front action modifies the timescale
of energy exchange with the environment compared to pure
diffusion. The front lowers the temperature throughout the
system [Fig. 3(c)] reducing the gradient at the colder wall.
As a result, the energy flows out of the system slower than in
the purely diffusive case [Fig. 2(a)]. This depends on the ratio
between τc and τd and the change in the initial flux. In the
presented example, the slowing down in the outflow of 80%
of available energy reaches roughly 25% of elapsed time.

The return to equilibrium exhibits asymmetry [Fig. 2(c)]
and the system cools down quicker than it heats up. We as-
sociate it with the relation between the energy stored in the
system and the underlying heat flux. The increase in the heat
flux is linear in the temperature difference, while the excess
energy grows slower than linear. As a result, we found that
the hotter system cools down quicker, which is the analog
of the Mpemba effect [Fig. 2(d)]. It would be interesting to
analyze this effect within the framework of nonequilibrium
thermodynamics. However, this requires additional numerical
simulation, and we leave it for future studies.

In our opinion, the presented results can be generalized
to more realistic systems, but further research must confirm
this. Here, we can only speculate on the effects of releas-
ing assumed constraints. For example, changing geometry
from an infinite slab to a channel will influence the results
quantitatively, but we expect the qualitative results to prevail.
In the case of total energy outflux, the fundamental reason
for the asymmetry is the difference in functional dependence
on the boundary conditions between the heat flux and the
amount of heat available for the exchange with the environ-
ment. The geometric details may modify but will not eradicate
this difference. In the case of heat front, the jumps of ther-
modynamic properties will depend on the surface area of
the front, which in turn depends on geometry. The ideal gas
model is convenient computationally but has limited appli-
cations. The other models will introduce modifications into
the conservation laws and need to be considered separately to
resolve all possible additional features. However, we think it
is unlikely that this introduces symmetry between cooling and
heating. Also, the front results from propagating the cessation
of the heat flux, which is present in energy conservation law
regardless of its specific form. Therefore, it will be present
with possibly modified properties.

The experimental observation of the phenomenon de-
scribed in this paper is difficult but feasible. At the moving
front, the temperature drops and its change can be monitored
by an array of thermocouples placed at micrometer spacing,
as was done by Fang and Ward in the study of the evaporation
phenomena [49,50]. However, it can be challenging to build a
wall that can instantly change from heat-conducting to adia-
batic.
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APPENDIX A: RESCALING AND PARAMETERS
OF THE MODEL

The space coordinate is scaled with the system size L,
while density ρ with ρ0 and T0 sets the scale for temperature

T . Time t is scaled with τc = L/c0, where c0 =
√

γ RT0
M is the

speed of sound at T0, and the coefficient γ = cp/cV is the
ratio of specific heat at constant pressure to specific heat at
constant volume. For monatomic ideal gas, cV = 3R/(2M )
and γ = 5/3. Consequently, c0 sets the velocity v scale and
∂xT is in units of T0/L. The pressure p is scaled with the
equilibrium pressure p0 = ρ0T0R

M , while the internal energy per
mass unit u is given in the equilibrium units ueq

0 = cV T0. The
dimensionless numbers are Re = ρ0Lc0

μ
(Reynolds), Pr = μcV

κ

(Prandtl), which include thermal conductivity κ , and λ
μ

(gas
viscosities ratio). In the case of monatomic gas, zero bulk
viscosity is widely accepted [51,52], which gives λ = −2μ/3.

Another timescale naturally appearing in the problem is
associated with thermal diffusion, τd = L2cV ρ0

κ
= 3L2 p0

2κT0
. It de-

pends on the transport coefficient κ contrary to τc. The ratio

τc/τd = 2κ (M )1/2

3Lp0(γ RT0)1/2
(A1)

increases with κ and decreases with system size, pressure, and
temperature.

All our numerical results have been calculated using the
following (base) set of parameters: T0 = 293 K, dT

dx
L
T0

=
5/293, p0 = 101 325 Pa, molecular mass of helium M =
4.0026 × 10−3 kg/mol, constant viscosity μ = 1.8805 ×
10−5 Pa s, and Prandtl number Pr = 0.6865. The equilibrium
parameters are close to standard conditions. For the base set
of parameters, c0 = 1007.5 m/s and ρ0 = 0.1665 kg/m3. The
size of the base system is L = 1 mm, which gives

τc = 10−6 s, τd = 6 × 10−3 s (A2)

and Reynolds number Re ≈ 8919.

APPENDIX B: HEAT FRONT SOLUTION

We discard higher-order terms and use the constitutive rela-
tion p = ρT in the energy conservation to obtain the ordinary
differential equations for small perturbations,

∂t ρ̃ + ∂x(ρstṽ) = 0, (B1a)

ρst∂t ṽ = −3

5
∂x p̃ + 4

3 Re
∂2

x ṽ, (B1b)

∂t p̃ = −5

3
pst∂x ṽ + 1

Pr Re
∂2

x T̃ . (B1c)

Next, we seek the solution in the form of a traveling front
f̃ (χ ) = f̃ (x + vwt ), where vw is the velocity of front prop-
agation in the negative direction along the x axis (the same
direction as in simulations). In the full numerical solution, the
front is not steplike but has its intrinsic width 2δ localized
around its position x∗. We assume that a change in ρst over
2δ from x∗ − δ to x∗ + δ is negligible and equal to the value
at the position of the front, ρ∗

st = ρst(x∗). Subsequently, we
integrate the equations between χ1 = x∗ − δ and χ2 = x∗ + δ,
with the b.c.: no perturbation before the front f̃ (x∗ − δ) = 0
and a small perturbation after the front f̃ (x∗ + δ) = f̃ . These
result in

vwρ̃ + ρ∗
stṽ = 0, (B2a)

vwρ∗
stṽ = −3

5
p̃ + 4

3 Re
∂χ ṽ, (B2b)

vw p̃ = −5

3
pstṽ + 1

Pr Re
∂χ T̃ . (B2c)

The continuity equation can be rewritten as

ṽ

vw

= − ρ̃

ρ∗
st
. (B3)

Similarly, the energy conservation equation can be written as

ṽ

vw

= −3

5

(
p̃

pst
− 1

Pr Re

∂χ T̃

vw pst

)
. (B4)

From momentum and energy conservation we obtain the
quadratic equation for vw that has a positive solution, which
we expand in a series for small 1/Re,

vw =
√

pst

ρ∗
st

+ 1

Re

[
2∂χ ṽ

3ρ∗
stṽ

−
√

pst

ρ∗
st

3∂χ T̃

10 Prpstṽ

]
+ · · · . (B5)

For large Re and ∂χ T̃ , ∂χ ṽ comparable to other variables, we
find

vw = c∗ =
√

pst

ρ∗
st
, (B6)

which is the speed of sound c∗ at the position of the front x∗.
However, in the general case the boundary conditions after the
front passage for ∂χ T̃ and ∂χ ṽ are necessary.

APPENDIX C: ADDITIONAL RESULTS

1. Parameter dependence

We found that a characteristic steep increase over the front
is present regardless of the simulation parameters. In Fig. 8
we show the change in pressure jump profile due to the mod-
ification of the value of a single parameter in relation to the
base set. The increase of viscosity makes the front profile
wider [Fig. 8(a)] as it increases the lengthscale of viscous
relaxation. The increase of heat flux increases linearly the
height of the front. It can be realized in two ways: either by
increasing κ [Fig. 8(b)] or by increasing dT

dx [Fig. 8(c)]. There
is an important difference between modifying κ and dT

dx to
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FIG. 8. Pressure profiles at t = 0.5τc (calculated with ceq). Each
panel shows changes due to modification of a single parameter.
(a) Viscosity μ is changed by factor 10. (b) Thermal conductivity
κ is changed by factor 2. (c) Temperature gradient dT

dx is changed by
factor 2. (d) Equilibrium temperature T0 is changed by T̄ = 40 K.

change the flux. Modifying dT
dx also influences the velocity

of the traveling front and other features of the solution. In
particular, it may take the solution out of the regime when
changes in temperature gradient are negligible. The change
in equilibrium temperature influences primarily the velocity
of the traveling front [Fig. 8(d)]. This is manifested by a
difference in the front position at the same moment in time,
as well as a change in the size of the jump.

2. Arbitrary change in heat flux

Instead of switching off the heat flux, one can increase it,
e.g., twofold. As a result, the traveling front has a jump of the
opposite sign, but the derived relations in jump magnitudes
are preserved (Fig. 9). The heat flux causes the temperature,
pressure, and density to increase. The simultaneous increase
in all three functions is possible because the front is triggered
by the energy flux. Additionally, after the front has passed
through, the gas flows in the direction of heat flux (Fig. 9).

In general, the magnitude of the front is governed by the
change of heat flux 	J imposed on the boundary with respect
to the stationary state,

p̃c∗ = 	J. (C1)

Another limiting case is the system in an equilibrium state
in which no flux is present prior to the one introduced at the
boundary.

3. Changing flux versus changing value at the boundary

We show the difference between forcing the system by
changing the temperature or by introducing heat flux on the
example of a system initially in the state of equilibrium.
Initially we keep the system at T0 and introduce either the
constant heat flux [Fig. 10(a)] or constant temperature value
[Fig. 10(b)] to the right boundary. Both result in the pulse
traveling with the speed of sound, yet with very different char-
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FIG. 9. Increasing heat flux. Solid lines denote solution with heat
flux switched off, and dashed lines denote solution with doubled heat
flux. (a) Temperature profile. (b) Pressure profile. (c) Density profile.
(d) Velocity. The meaning of lines is the same for all panels.

acteristics. When the temperature is raised to T1, we observe
a broadening peak that leaves elevated temperature behind.
The constant flux results in a stepwise profile. However, to
reach the comparable magnitude of the temperature increase,
we used 60-times-higher flux that is present in the stationary
state with T1 at the right wall.

4. Long systems and large gradients

We present only a short and qualitative discussion of sys-
tems with large temperature gradients. We use an extreme
example of a simulation in which T0 = 0.0001 K, pst =
102 187 Pa (the same as in the base case), T1 = 586 K,
L = 0.002 mm, and the rest of the parameters are kept as in
the base case. The characteristic time τc = 0.0034 s, which
is set by the speed of sound at very low equilibrium tem-
perature. The Re number decreases like the square root of
temperature and increases linearly with density. Thus, it can
be very high and reaches ≈7 × 105 in the presented case.
The dimensionless dT

dx = 5.86 × 106, which is very large, and
the ratio between it and Re (present in dimensionless flux

1
Pr Re

dT
dx ) is of the order of 10, which is much higher than
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FIG. 10. Traveling pulse in the system initially in equilibrium
temperature T0 upon change of the boundary condition at the right
wall to (a) constant dimensionless heat flux J = 60, (b) constant
temperature T1. The meaning of lines is the same for both panels.
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in the case of a small gradient considered in the main text.
These values may suggest also that other rescaling may be
appropriate. The character of the solution changes when the
front approaches the cold end of the system (Fig. 11). As a
result, the jumps in profiles grow until reaching the wall. The
reflection changes the profiles qualitatively. The temperature
[Fig. 11(a)] and pressure [Fig. 11(b)] acquire a negative peak
(dimple). The density increases with respect to the stationary
state [Fig. 11(c)]. Finally, the velocity profile changes its sign
[Fig. 11(d)]. This suggests that for very low temperatures, the
diffusion and ballistic heat transport can no longer be treated
separately.

APPENDIX D: NUMERICAL METHODS

1. Computational tool

Numerical simulations were performed using the open
source library OPENFOAM [38–40], which was developed
to solve partial differential equations with the finite volume
method [53,54].

The complete set of equations is mass, momentum (with
linear stress tensor, constant viscosity, and zero bulk vis-
cosity), and energy conservation equations (with constant
thermal conductivity) closed with the constitutive relations for
monatomic ideal gas [21],

∂ρ

∂t
+ ∇ · (vρ) = 0, (D1a)

ρ

[
∂v
∂t

+ ∇ · (vv)

]
= −∇p − ∇ · �, (D1b)

3R

2M

∂ρT

∂t
= −∇ ·

(
3

2

R

M
ρT v

)
− p∇ · v

−� : ∇v + κ∇ · ∇T, (D1c)

� = 2

3
μ(∇ · v)I − μ

(∇v + (∇v)T)
, (D1d)

FIG. 12. Geometry, initial and boundary conditions. (a) System
prepared in the equilibrium state. (b) System transformed from equi-
librium to a stationary state.

p = ρ
RT

M
, (D1e)

u = 3

2

RT

M
. (D1f)

In the above, ρ is density, t is time, v is velocity, p is pressure,
� is the dynamic part of the stress tensor, R is a gas constant,
M is molar mass, κ is thermal conductivity, μ is viscosity,
I denotes a unit tensor, and u is the internal energy per unit
mass.

The equations are solved iteratively in a time loop with the
PISO algorithm [55], which is used for solving the pressure-
velocity coupling problem in the Navier-Stokes equation.

To compare the full solution with the diffusive solution, we
solve the following reduced set of equations:

∂ (
∫

ρ dr)

∂t
= 0, (D2a)

3R

2M

∂ρT

∂t
= κ∇ · ∇T, (D2b)

p = ρ
RT

M
, (D2c)

u = 3

2

RT

M
, (D2d)

which is obtained from (D1) assuming v = 0, p = const and
physically means that the total mass in the system is conserved
and density will follow the temperature distribution immedi-
ately.

2. Geometry, boundaries, and initial conditions

Simulations were performed in one-dimensional geome-
try (along the x axis) that had length L and impermeable
boundaries at x = 0 and x = L [Fig. 12(a)]. The geometry
was filled with N moles of ideal gas in such way that in
thermal equilibrium at temperature T0 under equilibrium pres-
sure T0, density is equal to equilibrium density ρeq. Next, the
system was transformed to the stationary state given uniquely
by T0,

dT
dx , and N moles of gas the same as in equilibrium

[Fig. 12(b)]. We used for that purpose an additional utility
written in OPENFOAM.

054133-10



TRANSIENT DYNAMICS IN THE OUTFLOW OF ENERGY … PHYSICAL REVIEW E 105, 054133 (2022)

In the simulations, we used L = 10−3 m, which was di-
vided into 3000 computational cells that correspond to 1/3 ×
10−6 m. We found this spatial resolution sufficiently high
to resolve the details of the traveling front, which had a
lengthscale δ of 8 × 10−5 m (corresponding to roughly 240
computational cells). The velocity of sound in simulated gas
(helium) was close to 103 m/s. In the simulations, we used
the time step 10−11 and 10−12 s to be sure that we resolved
all relative timescales correctly. Both time steps gave indistin-
guishable results.

3. Code availability

The OPENFOAM codes for solving Eqs. (D1) and (D2)
together with application setting the initial conditions are
available. They were written, used, and tested under a

foam-extend 4.1 distribution. The package DataS1.zip
includes the following:

(i) eRhoFullFoam—the OPENFOAM solver for solving
Eqs. (D1).

(ii) eRhoReducedFoam—the OPENFOAM solver for solv-
ing Eqs. (D2).

(iii) statInitLine—the OPENFOAM utility to set
stationary-state initial conditions.

(iv) fullSolution—the one-dimensional case including
a traveling front.

(v) reducedSolution—the one-dimensional case includ-
ing diffusive heat transport only.

(vi) shortManual.pdf—the short manual explaining the
usage of the code.

The package can be downloaded from the github repository
[56].
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