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ABSTRACT
Equilibrium thermodynamics describes the energy exchange of a body with its environment. Here, we describe the global energy exchange of
an ideal gas in the Coutte flow in a thermodynamic-like manner. We derive a fundamental relation between internal energy as a function of
parameters of state. We analyze a non-equilibrium transition in the system and postulate the extremum principle, which determines stable
steady states in the system. The steady-state thermodynamic framework resembles equilibrium thermodynamics.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0170079

I. INTRODUCTION

There is mounting evidence that the exchange of energy of
a macroscopic steady state system with its environment can be
described in an equilibrium thermodynamic-like fashion. It has been
considered in the 1990s of the 20th century for systems with chem-
ical reactions that may constantly occur in time.1–3 Such a steady
state situation goes beyond equilibrium thermodynamics which
excludes any macroscopic flows and currents.4 Around a similar
time, the thermodynamic-like approach was introduced for systems
with shear-flow5–8 and is still under development.9–12 Another class
of macroscopic systems for which the attempt to introduce ther-
modynamic description has been undertaken is systems with heat
flow.13–17

The above approaches to formulate steady state thermodynam-
ics focus on chemical reactions and shear flow, both in homogeneous
temperature profiles or systems with heat flow without chemical
reactions and macroscopic flows. If steady state thermodynamics is
ever formulated on general grounds, it is now at its inception. About
two decades ago, Oono and Paniconi18 and Sasa and Tasaki19 postu-
lated a thermodynamic-like description based on a general footing.
However, because the descriptions were postulated, they require
validation and further investigation on the eventual limitation.

In particular, it is not clear whether the nonequilibrium entropy
defined by the integral of the local entropy density over the vol-
ume of the system14 or rather the excess heat-based entropy18 should
be used to construct the principles of steady-state thermodynamics.
These two entropies are not equivalent.16 It shows that the steady
state thermodynamics is far from complete, and the core fundamen-
tal questions still remain open.14,17 It is worth mentioning stochas-
tic thermodynamics, which focuses on thermodynamic notions
for the system on the level of individual trajectories.20,21 Here
we focus on a reduced, macroscopic description of a steady state
system.22

Allowing various macroscopic constant fluxes drives the sys-
tem from equilibrium to a steady state and opens up phenomena
that eludes equilibrium thermodynamics. Take for example a qui-
escent liquid in a uniform gravitational field in equilibrium. This
situation assumes a uniform temperature and no macroscopic flows,
which, together with the equations of state, determine the thermo-
dynamic parameters at each point of the system. Allowing a vertical
or horizontal heat flow radically changes the situation. The flow of
heat combined with the gravitational force can cause regular mass
movement, either because the denser liquid is at the top and the
thinner is at the bottom or because gravity unevenly acts on areas
with different horizontal densities. This unstable situation causes a
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FIG. 1. Ideal gas in shear flow. The gas is confined by the immobile bottom wall
and by the upper wall moving with velocity Vw . There is also a thermally insulating
and moving internal wall at vertical position zw that divides the gas into two sub-
systems. Shearing motion causes energy dissipation in the system, which changes
the temperature profile. The heat flows out from the system through the confining
walls at temperature T0. Colors schematically show the temperature profile (red -
hotter, blue - colder).

mass movement in the atmosphere, oceans, planets, and stars.23 The
core feature of this phenomenon is the coupling between the heat
flow and the mass flow. However, the question arises whether some
reduced description for non-equilibrium steady states also emerges
from hydrodynamics. Can it take the shape of equilibrium ther-
modynamics, in which the system’s behavior is described by only
a few parameters and the rules of extremum containing only these
parameters?

Here we present a thermodynamic-like description of a sys-
tem with heat and mass flow coupling. We consider ideal gas in
shear flow with a dissipative temperature profile shown schemat-
ically in Fig. 1. We introduce the first law for this system that
describes different ways of exchanging the system’s energy with its
environment. We also consider a movable wall as a thermodynamic
constraint in the system. We introduce the extremum principle that
determines the position of the wall. We show that there is a crit-
ical shear in the system above which the equilibrium position of
the internal wall becomes unstable, and the system undergoes a
nonequilibrium second order phase transition. We give a complete
thermodynamic-like description of this steady state system in which
the position of the movable wall is a thermodynamic constraint.
For the vanishing shear flow, the steady state extremum principle
directly reduces to the minimum principle in the corresponding
problem in thermodynamics.

II. SYSTEM
We consider ideal monoatomic gas between two parallel walls

at walls’ temperature T0, as shown in Fig. 1. The upper wall moves
with speed Vw moving in x-direction. The system is described
by irreversible thermodynamic equations: the continuity equa-
tion, Navier–Stokes equation, energy balance and two equations of
state.24 We assume that the system is translationally invariant in x
and y directions, therefore the fields depend only on z coordinate. In
particular, equations of state are given by,

p(z) = n(z)kBT(z), (1)

u(z) = 3
2

n(z)kBT(z), (2)

with pressure p(z), volumetric particle number density n(z), tem-
perature T(z), Boltzmann constant kB, and the volumetric energy
density, u(z). The velocity field also depends on z coordinate only
and is oriented in the direction determined by the moving wall,

v(x, y, z) = exv(z). (3)

Such a velocity profile is called planar Couette flow.

III. STEADY STATE
We describe the system within linear response theory.24 There-

fore, the system is locally described by equation of states (1) and (2)
supplemented with mass, momentum and energy conservation. We
neglect bulk viscosity. We assume that the shear viscosity coefficient
η does not depend on the local state of the gas, so the viscosity does
not depend on local density and temperature. The translational sym-
metry for the pressure, p(r) = p(z), and for the velocity given by
Eq. (3) reduces the z-component of the Navier–Stokes equation,

ρ(∂tv + (v ⋅ ∇)v) = −∇p + ηΔv + 1
3
η∇(∇ ⋅ v), (4)

to the formula, dp(z)/dz = 0, while the x-component of the
Navier–Stokes equation gives 0 = ηd2v(z)/dz2. Therefore the pres-
sure in the system is homogeneous,

p(z) = p, (5)

and, using the boundary conditions v(0) = 0 and v(L) = Vw , there
is a shear flow in the system,

v(z) = z
L

Vw. (6)

The continuity equation,

∂tρ + v ⋅ ∇ρ = −ρ∇ ⋅ v, (7)

with mass density ρ(z) and the above velocity field is satisfied auto-
matically for any density profile. The energy balance equation is
given by,

ρ(∂tum + v ⋅ ∇um) = κΔT − p∇ ⋅ v + 2η ˚[∇v] s : ˚[∇v] s, (8)

where ˚[∇v]si j = (∇iv j +∇ jvi − δi j
2
3∇ ⋅ v)/2 denotes the sym-

metrized and traceless velocity gradient matrix, the colon is the
double contraction, δij denotes the Kronecker delta, um = u/ρ is the
mass density of the internal energy and κ is the heat conductivity
coefficient. Utilizing the shear velocity profile (6) and the transla-
tional invariance of the internal energy density, um(z), the energy
balance equation reduces to the equation for the temperature profile

0 = κ d2

dz2 T(z) + η(Vw

L
)

2
. (9)

The above equation has the following form, 0 = κ d2

dz2 T(z) + λ, where
λ is the volumetric heating rate,

J. Chem. Phys. 159, 194113 (2023); doi: 10.1063/5.0170079 159, 194113-2

© Author(s) 2023

 22 N
ovem

ber 2023 16:31:06

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

λ = η(Vw

L
)

2
. (10)

We also introduce the dimensionless parameter

D ≡ ηV2
w

κT0
.

It measures the effects of the energy dissipation rate with respect to
the heat flow effects.

IV. SHEAR FLOW WITHOUT THE INTERNAL WALL
We first consider the shear flowing system shown in Fig. 1, but

without the internal wall. In this situation, the boundary conditions
are that on the upper and lower surface and the temperature profile
is given by,

T(z) = T0[−
1
2
λL2

κT0
( z

L
)

2
+ 1

2
λL2

κT0

z
L
+ 1]. (11)

Number of particles in the surface area A of the transla-
tionally invariant system is determined by the particle density,
N = A∫ L

0 dz n(z), which with the mechanical equation of state (1)
and the above temperature profile gives

p = NkBT0

AL
ψ(ηV2

w

κT0
), (12)

where

ψ(D) ≡ D

8
√

D
8+D tanh−1

√
D

8+D

. (13)

Combination of equations of state (1) and (2) gives the following
internal energy density u(z) = 3p(z)/2. Total internal energy in the
system is given by

U = A∫
L

0
dz u(z) = 3

2
ALp, (14)

where we used the fact, that the pressure in the system is constant.
Utilizing Eq. (12) in the above equation we get,

U = 3
2

NkBT0ψ(
ηV2

w

κT0
). (15)

We determine the kinetic energy due to macroscopic motion,
Ek = A∫ L

0 dz mn(z)v2(z)/2, where m is a mass of a single ideal gas
molecule. We obtain

Ek = mN
V2
w

2
ε(ηV2

w

κT0
), (16)

where

ε(D) = 2
D
(4 +D

4
1

ψ(D) − 1). (17)

Utilizing Eqs. (15)–(17) we obtain the relation between the
kinetic and internal energy,

Ek
η

mNκT0
=

4 + ηV2
w

κT0

4

3
2 NkBT0

U
− 1. (18)

V. TRANSITION BETWEEN STEADY STATES
AND ENERGY BALANCE

We consider transitions between steady states in the system.
The system is in one steady state at time ti, after which we slightly
change one or more control parameters that appear in (or are related
to) the governing equations. For example, we slowly modify the
velocity of the wall, the position of the upper wall (volume V) or the
external temperature T0. In particular, we increase the velocity of
the wall by Vw(t) = Vw + (t − ti)dVw/(tf − ti) for ti < t < tf , which
modifies velocity of the wall from Vw to Vw + dVw . This induces a
time dependent hydrodynamic field. After time tf the system reaches
another steady state close to the previous one due to a small change
in the control parameters. We focus on steady, nonequilibrium states
with a constant number of particles in the system.

Previously we have analyzed the energy balance for an ideal gas
in a heat flow16 during the transition between steady states. The con-
siderations necessary for Couette flow go along the same line. We do
not repeat them but give a sketch. We monitor the change of the
energy between times ti and tf ,

dU = U(tf) −U(ti) = ∫
t f

ti

dt
dU(t)

dt
,

where

U(t) = ∫
V(t)

d3r ρ(r, t)um(r, t), (19)

ρ(r, t) is the density and um(r, t) is the internal energy density per
unit mass at position r and time t. We represent the time derivative
of the above integral by

dU(t)
dt

= ∫
∂V(t)

d2r n̂ ⋅ vb(r, t)ρ(r, t)um(r, t)

+ ∫
V(t)

d3r ∂t(ρ(r, t)um(r, t)). (20)

The first term in the above equation appears as a result of the motion
of the boundary. vb(r, t) is the velocity of the boundary at given time
and position r. Next, we utilize the internal energy balance Eq. (8).
However, we use the following equivalent form24

J. Chem. Phys. 159, 194113 (2023); doi: 10.1063/5.0170079 159, 194113-3

© Author(s) 2023

 22 N
ovem

ber 2023 16:31:06

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

∂tρum = −∇ ⋅ (ρumv + Jq) − P : [∇v], (21)

where the pressure tensor P in the system is given by

Pij = pδij +Πij ,

Π = −2η ˚[∇v] s,

and Jq = −κ∇T is the heat flux. Using Eq. (21) in (20), we obtain
expression for dU(t)/dt with several terms. The two of these terms
produce

∫
∂V(t)

d2r n̂ ⋅ (vb(r, t) − v(r, t))ρ(r, t)um(r, t),

which vanishes due to two reasons. On the wall, normal components
of the velocities are equal, n̂ ⋅ vb = n̂ ⋅ v because the wall determines
the system’s surface. On the surface of the system perpendicu-
lar to the wall, the above integral vanishes because the system
is translationally invariant. All other terms lead to the following
contributions,

dU = d̄Q + d̄W + d̄D, (22)

with the excess heat defined by

d̄Q = −∫
t f

ti

dt∫
∂V(t)

d2r n̂ ⋅ (Jq(t) − Jq,st(t)), (23)

where n̂ is the vector normal to the surface of volume V , with the
work related to the expansion of the gas defined by

d̄W = −∫
t f

ti

dt∫
V(t)

d3r p∇ ⋅ v, (24)

and the excess dissipation defined by,

d̄D = −∫
t f

ti

dt∫
V(t)

d3r (Π : [∇v] −Πst(t) : [∇vst(t)]), (25)

where [∇v]i j = ∇iv j is the gradient velocity matrix. The subscript st
in the above equations means that the quantity should be taken at a
steady state that corresponds to the control parameters at time t. The
first term in the internal energy balance (22), d̄Q, is the heat on top of
the steady state heat exchanged during the transition between steady
states.18 The second term in (22) is the volumetric work performed
by that wall (more specifically, by the perpendicular component of
the force of the wall) when the system is compressed. The third term
d̄D is the energy dissipation in the system on top of the steady state
dissipation. In the above representation, we also used the fact that
in a steady state, the heat flowing out of the system is equal to the
dissipation due to shear in the fluid,

∫
∂V(t)

d2r n̂ ⋅ Jq,st(t) + ∫
V(t)

d3rΠst(t) : [∇vst(t)] = 0. (26)

Because the pressure in a steady state is spatially uniform, the
work from Eq. (24) for slow transitions between steady states reduces

as follows, d̄W ≈ −p∫
t f

ti
dt∫V(t) d3r∇ ⋅ v. The integrals of the diver-

gence with the Gauss theorem reduce to the change of the volume,
and the work reduces to the volumetric work that also appears in
equilibrium thermodynamics,

d̄W = −pdV.

To determine the exchange of the kinetic energy, we proceed
along the same line as for the internal energy above. Thus we use the
kinetic energy balance equation,24

∂t
1
2
ρv2 = −∇ ⋅ (1

2
ρv2v + P ⋅ v) + P : [∇v]. (27)

Analysis of the change of the kinetic energy dEk = Ek(tf) − Ek(ti)
= ∫

t f
ti

dt dEk(t)
dt leads to the conclusion that during the transition

between steady states, the kinetic energy changes according to the
following equation,

dEk = d̄Ww − d̄D, (28)

where

d̄Ww = ∫
t f

ti

dt∫
∂V(t)

d2r n̂ ⋅ (Π ⋅ v −Πst(t) ⋅ vst(t)).

According to the above equations, the kinetic energy may change
in two ways. d̄Ww is the work performed by the upper wall on top
of the steady work performed to keep the shearing steady state. It
may be called the excess shear work of the wall. This effect has been
recently discussed by Baranyai.12

The differential of the total energy, E = U + Ek follows from
Eqs. (22) and (28) and is given by,

dE = d̄Q − pdV + d̄Ww. (29)

The total energy changes as a result of the excess heat d̄Q, volumetric
work −pdV , and the excess shear work d̄Ww . Contrary to the energy
balance Eqs. (22) and (28), there is no excess dissipation d̄D defined
by Eq. (25) in the above total energy balance equation. It follows that
the excess dissipation d̄D describes an internal transfer of internal
and kinetic energy. During the steady state transition, part of the
kinetic energy changes to internal energy through the kinetic energy
dissipation that occurs on top of the steady state dissipation.

VI. NONEQUILIBRIUM ENTROPY
By introducing

d̄P ≡ d̄Q + d̄D (30)

we obtain the internal energy balance (22) in the following form,

dU = d̄P − pdV. (31)

The above formula holds in the space of the control parameters,
which are temperature T0, the volume of the system V , and the speed
of the moving wall Vw . We do not change the number of parti-
cles N. The above formula has the same form as the internal energy

J. Chem. Phys. 159, 194113 (2023); doi: 10.1063/5.0170079 159, 194113-4

© Author(s) 2023

 22 N
ovem

ber 2023 16:31:06

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

of ideal gas without the macroscopic kinetic energy but with volu-
metric heating.15,16 Because the pressure in a shear flow system is
constant, Eq. (5), and due to the ideal gas mechanical equation of
state, Eq. (14), we obtain,

p = 2
3

U
V

. (32)

We notice the following two facts. First, the internal energy bal-
ance in the transition between steady states given by Eq. (31) is very
similar to the equilibrium thermodynamics expression dUeq = d̄Weq
−pdV . We see that the differential d̄P plays the role of the heat dif-
ferential in equilibrium thermodynamics. Second, the expression for
pressure (32) is also the equilibrium ideal gas pressure mechanical
equation, p = 2Ueq/3V . The above two similarities between steady
state and the equilibrium thermodynamic differentials suggest that
there exists the integrating factor T∗ for d̄P differential,

d̄P = T∗dS∗, (33)

where nonequilibrium (effective) entropy is given by the following
fundamental equation for the internal energy,

S∗(U, V) = NkB log [V
N
(U

N
)

3/2
] +Ns0, (34)

where s0 is a constant such that without the shear flow we obtain
the equilibrium fundamental relation, while the nonequilibrium
temperature

T∗ =
∂U(S∗, V)

∂S∗
. (35)

The pressure is determined by p = −∂U(S∗, V)/∂V . Whether
the differential d̄P has integrating factor (is exact) can
also be shown directly by proving that the differential
d̄P = dU/T∗(U, V , Vw) + p(U, V , Vw)/T∗(U, V , Vw)dV + 0 ⋅ dVw

has equal derivatives, ∂(1/T∗)/∂V = ∂(p/T∗)/∂U and that the
differential does not explicitly depend on Vw .25

It is worth noting that the nonequilibrium temperature T∗

has the interpretation of the average (density-weighted) temperature
because it is also given by

T∗ =
1
V ∫d3r n(r)T(r)

N/V . (36)

To derive the above formula, we first use Eqs. (34) and (35) to
obtain T∗ = 2U/3NkB. We then eliminate energy utilizing Eq. (32)
to get T∗ = pV/NkB and use Eq. (1) integrated over the volume of
the system. Therefore, it is justified to call T∗ the nonequilibrium
temperature.

Similarly, it is reasonable to call S∗ the nonequilibrium entropy
for the following reason. S∗ is defined as the potential of the dif-
ferential d̄P. It means that during a transition between steady states

for which the nonequilibrium entropy is constant, the differential
d̄P = 0. The physical interpretation of the latter condition follows
from the use of Eq. (30), which gives d̄Q+ d̄D = 0. Utilizing Eqs. (23),
(25), and (26) in the latter formula, we obtain the equivalence of
d̄P = 0 with the condition,

∫
t f

ti

dt∫
∂V(t)

d2r n̂ ⋅ Jq(t) + ∫
t f

ti

dt∫
V(t)

d3rΠ : [∇v] = 0. (37)

According to the above equation, two mechanisms of the change of
the internal energy cancel each other. The total heat flowing from the
system during the transition equals the dissipation due to the viscous
friction inside the system. The outflow of heat equilibrates volumet-
ric heating of the friction. In this sense, the steady state system is
“adiabatically insulated,” i.e., without the net transfer of heat.

VII. SYSTEM WITH INTERNAL WALL
Now we focus on the system with the internal wall shown in

Fig. 1. The wall splits the system into two parts, upper 1 and lower 2.
In a steady state, the velocity field in the system is the shear flow
given by Eq. (6). Therefore the velocity of the internal wall is
V s
w = Vwzw/L, where zw is the position of this wall. The wall is

adiabatically insulating, which changes one of the boundary con-
ditions. There is no heat flow through the wall. Without the wall
the temperature profile would be given by the symmetric parabola,
Eq. (11), but the insertion of the adiabatic wall in the middle of the
system leads to the situation with half of the parabolic profile. Using
this observation, we conclude that from the perspective of the heat
flow equation, we can use the solution without the internal wall to
determine the energy of subsystem 2 as follows, U2(T, A, L2, Vu

w,2)
= U(T, A, 2L2, 2Vu

w,2)/2, where Vu
w,2 is the speed of the upper wall in

subsystem 2 and L2 is the vertical length of the subsystem. Because
the change to the moving reference frame does not change the inter-
nal energy, we can deduce the internal energy of the upper system
in a similar manner. The internal energy in both subsystems is
given by,

Ui(T, A, Li, Vu
w,i − V l

w,i)

= 1
2

U(T, A, 2Li, 2(Vu
w,i − V l

w,i)) for i = 1, 2,

where Vu
w,i is the speed of the upper wall in subsystem i, and V l

w,i

is the speed of the lower wall in subsystem i. We have V l
w,2 = 0 and

Vu
w,2 = V l

w,1.
Using the properties of the equations of state for ideal gas we

can show that the differentials

d̄Pi ≡ dUi + pidVi for i = 1, 2, (38)

have integrating factors in agreement with Eq. (33),

d̄Pi = T∗i dS∗i for i = 1, 2. (39)

On the other hand, the analysis of the energy balance similar to the
one presented in Sec. VI leads to the conclusion that d̄P1/2 = d̄Q1/2
+ d̄D1/2 is the sum of excess heat and excess dissipation in each sub-
system. The differentials d̄Q1/2 and d̄D1/2 are determined by a direct
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application of formulas (23) and (25) with the replacement of the
volume of integration with the volume for a particular subsystem.

Until now, we have discussed the energy balance independently
for each subsystem. But it is particularly interesting to consider
a perpendicular motion of the internal wall. As follows from the
dynamics, the normal component of the pressure tensor on the wall
in a steady state comes solely from hydrostatic pressure. The wall
may move vertically only due to the pressure difference, p1 ≠ p2. Its
natural position is where these pressures are balanced. Therefore the
knowledge of the effective entropy S∗ and volume for each subsys-
tem is sufficient to determine the force acting on the wall. The wall’s
horizontal velocity enters the problem indirectly. The shear velocity
plays the role of energy dissipation. The speed of the wall appears in
the energy balance Eq. (9) in the source term. It thus plays the role
of volumetric heating, λ ≡ η(Vw/L)2.

The ideal gas with volumetric heating and an internal wall has
already been considered previously.15 Such a system exhibits con-
tinuous nonequilibrium phase transition. Similarly, the system with
macroscopic kinetic energy shown in Fig. 1 will exhibit the phase
transition as well for the following reason. Let’s focus on the posi-
tion of the internal wall zw and upper wall velocity, Vu

w,2, keeping
the external walls temperature T0, the total volume of the system,
L1 + L2 = L, and other parameters constant. Number of particles in
both subsystems is equal, N1 = N2. Because the hydrostatic pressure
gives the sole force normal to the walls, the motion of the internal
wall can be determined by the fundamental relations (34) for each
subsystem. The pressure follows from pi = pi(Ui, Vi, Ni). Moreover,
the internal energy in steady state is determined by Eq. (15). For the
same value of volumetric heating, the system with volumetric heat-
ing considered in Ref. 15 and the system with shear flow considered
in this paper have the same temperature, density and pressure pro-
files. This reasoning leads to the conclusion that from the perspective
of the position of the internal wall, the steady state behavior of both
subsystems is the same. The speed of the upper wall for the system
with kinetic energy must be related to the volumetric heating λ from
Ref. 15 by λ ≡ η(Vw/L)2.

The appearance of a phase transition can be explained as the
result of the competition of two effects. The first effect is decrease of
pressure due to expansion of the subsystems and is of equilibrium
nature. The opposite effect is due to the dissipation of energy, which
acts as volumetric heating of the system. In shear flow, the larger the
volume of the subsystem, the larger the energy dissipated, the more
significant the increase of its temperature profile and the increase of
the pressure in the subsystem. As a result, the effect of shear is that
the expansion of a subsystem increases its pressure. For sufficiently
large shear flows, the second effect dominates.

Because there is one-to-one correspondence, we conclude that
once the upper wall’s speed increases, the shear flow volumetri-
cally heats the system. For the value, λL2/4κT0 ≈ 4.553 44 taken from
Ref. 15, which with the use of λ ≡ η(Vw/L)2 gives equivalently the
condition for the speed of the upper wall ηV2

w/4κT0 ≈ 4.553 44, the
central position of the wall ceases to be stable. Above the critical
speed, the wall spontaneously chooses one of the two stable positions
and moves away from the center. As we show below, it is possible to
introduce an extremum principle that determines the spontaneous
position of the internal wall. Let’s consider an additional external
force Fw perpendicular to the wall. In a steady state it is determined

by the pressure difference, Fext = −A(p2 − p1). The force performs
work on the system, d̄Wext = −A(p2 − p1) dzw . Because the sponta-
neous direction of the wall is toward the equilibration of pressures,
the system reaches “equilibrium” for the position of the wall zw , for
which the work done by the external force is negative,

d̄Wext < 0. (40)

The above phenomenological fact we use to construct the
thermodynamic-like extremum principle. When the upper wall does
not move vertically, the work of the external force is related to the
volumetric work in both subsystems,

d̄Wext = −p1dV1 − p2dV2. (41)

This equation, by utilizing the internal energy balance given by
Eq. (38) and the nonequilibrium entropy (39), is expressed as
follows,

d̄Wext = dU1 − T∗1 dS∗1 + dU2 − T∗2 dS∗2 . (42)

Equivalently, it is given by

d̄Wext = dU12 − d̄P12, (43)

where

dU12 = dU1 + dU2 (44)

and

d̄P12 = d̄P1 + d̄P2. (45)

Equation (43) puts us in the same position as in equilibrium
thermodynamics: if d̄P12 has an integrating factor and the corre-
sponding potential, d̄P12 = T∗12dS∗12, then the condition of minimal
work (40) by means of expression (43) follows the condition of the
minimum of the energy for “adiabatically insulated” system defined
by S∗12 = const surface. This surface is considered in the space of
T0, V1, V2, Vw , because we keep the number of particles N1, N2, and
other parameters constant. Let’s notice that expressions (40)–(45)
for the case of no shear flow (no heating), Vw = 0, reduces to
the problem of finding the position of the wall that separates two
homogeneous ideal gases. Thus, in equilibrium thermodynamics,
d̄P, becomes the heat differential. The nonequilibrium situation has
been discussed earlier16 and it suggests the minimum principle as
follows.

The position of the wall is determined by the minimum of
total internal energy, U12, as a function of parameters of states
S∗1 , V1, S∗2 , V2, for the constraint

S∗12 = S∗1 + rS∗2 . (46)

The latter condition denotes steady “adiabatic insulation.” In this
principle there appears parameter r. Let’s apply the above principle
to verify whether it gives a proper position of the wall and to find
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the meaning of r parameter. We apply the above principle with the
constraint of total volume of the system fixed,

V = V1 + V2. (47)

The total energy is given by

U(S∗1 , V1, S∗2 , V2) = U(S∗1 , V1) +U(S∗2 , V2), (48)

where U(S∗1 , V1) follows from the fundamental relation (34). Min-
imization of the above energy with constraints (46) and (47) allows
us to use S∗1 and V1 as two independent parameters and minimize
the function U(S∗1 , V1) +U((S∗12 − S∗1 )/r, V − V1). Its first deriva-
tives lead to the following necessary conditions for the minimum of
the function,

T∗1 −
1
r

T∗2 = 0,

p1 − p2 = 0.
(49)

It proves that the necessary condition for the minimum in the pre-
sented extremum principle leads to equality of pressures. The first
of the above equations gives the interpretation of r parameter. It is
the nonequilibrium temperature ratio. Notice that when r = 1, the
entropy becomes additive [Eq. (46)] and the minimum principle
reduces directly to the equilibrium minimum principle.

In the above reasoning the minimum principle follows from
the fact, that the internal energy balance is determined by dU i = d̄Pi
−pidV i with homogeneous pressure that is solely determined by the
internal energy and volume, pi = pi(Ui, Vi). Both assumptions also
hold when transport coefficients depend on parameters of states.17

In particular, if the viscosity or heat conductivity depends on density
or temperature. For this reason, the derived minimum energy prin-
ciple is also valid beyond the regime of Onsager’s linear response
theory.24

It is also worth noting that the inequality (40) which deter-
mines the direction of spontaneous motion of the wall, with the use
of Eqs. (29) and (41) applied to each subsystem is expressed by

d̄Wext = dE12 − d̄Q12 − d̄Ww12,

with energy differential, dE12 = dE1 + dE2, excess heat d̄Q12 = d̄Q1
+ d̄Q2 and excess work performed by wall, d̄Ww12 = d̄Ww1
+ d̄Ww2. The above formula suggests an approach to identify the
quantity that is minimized in the system by subtraction from total
energy all other terms (apart from work related to the change of the
constraint) that are present in the energy balance equation (here,
excess work performed by the wall and heat) which describe the
ways the system exchanges energy with the environment. Such a way
could lead to a mnemotechnic rule to identify the physical quantity
to generalize the second law in other situations than considered in
this paper (e.g., with the exchange of particles).

VIII. SUMMARY
In this article, we investigate whether there is a description sim-

ilar to equilibrium thermodynamics for out-of-equilibrium steady

states. We consider this problem in the context of the Couette flow,
where there is a mass current (velocity field), energy dissipation, and
a continuous flow of heat. Each feature independently excludes the
theory of equilibrium thermodynamics and its tools.

Since, in general, it is still unclear that such a simple, equi-
librium thermodynamic-like description of nonequilibrium steady
states is possible, we have chosen the most straightforward possible
system, which we believe includes the coupling of mass flow and heat
current, i.e., an ideal gas in shear flow. We show that nonequilibrium
entropy exists, which describes how the system gains energy through
excess heat or dissipation. In addition, the nonequilibrium entropy
allows us to construct the principle of minimum energy, which leads
to the proper state of the system after removing the constraint, which
is the force acting on the wall in the system. It proves the existence of
a description of a system with an out-of-equilibrium heat and mass
flow, which practically takes the form of equilibrium thermodynam-
ics and reduces to the principle of minimum energy in equilibrium
thermodynamics when the shear flow disappears.

It is worth mentioning that the thermodynamics of the flowing
system have been considered previously with the use of thermostated
simulations.9–11 A numerical technique with a thermostat cannot be
used directly to confirm relations derived in our paper, e.g., Eq. (22),
because at the paper’s core is the energy balance in the system with-
out local heat sources, which are not related to the dissipation due
to shear. However, one could repeat calculations in our paper and
consider the effects of the thermostat. It would produce an addi-
tional term in Eq. (22) and require the redefinition of the excess
heat because the thermostat adds a volumetric heating term to the
energy balance equation. A similar effect we have considered in our
previous paper.16 The approach presented in our paper applies to
the global energy flow from a given volume of the system during
the transition between steady states. If the “given volume” would
be the simulation cell, this approach could be helpful to generalize
such simulation techniques as multiparticle collision dynamics26 to
control the energy balance on the level of individual cells.

It is also worth noting that the description formulated in
our paper uses the non-equilibrium entropy defined as the poten-
tial of the excess heat differential. This entropy differs from the
non-equilibrium entropy defined as the integral of the equilibrium
entropy density over the volume.16 Our result suggests that the
non-equilibrium entropy defined as the excess heat differential is
the one that should be utilized to construct a thermodynamic-like
description for non-equilibrium steady states.

The thermodynamic-like description introduced in this paper
leads to further questions inspired by equilibrium thermodynam-
ics. Particularly interesting are the procedures for measuring non-
equilibrium state parameters, effective temperature and entropy,
and measuring excess heat, dissipation, and work the wall performs.
It is worth noting that the obtained result goes along the line of
recent experiments of Yamamoto et al., who extended calorimetry
for the measurements of the excess heat of sheared fluids.27 Another
issue is the possibility of developing the description of interact-
ing systems, where the fundamental relationship for van der Waals
gas with heat flow can be introduced. It is also interesting to ask
about Maxwell’s identities, which in equilibrium thermodynamics
appear very practical. Finally, it is fascinating to check whether such
a description exists for other systems with coupled heat flow and
mass current in the atmosphere and the chemical industry.
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