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1. Introduction

Various types of suspension of spherical particles can be found in nature and industry. The
diversity follows from the fact that systems may be composed of many sorts of particles,
such as hard spheres or spherical polymers [1], and many types of forces may act between
particles [2, 3]. This variety in a structure implies a wide range of phenomena exhibited by
suspensions. To understand them it is often crucial to consider hydrodynamic interactions
between particles, that is their mutual influence through movement of the surrounding
liquid (which is different from the influence through direct forces, such as magnetic or
van der Waals force). In many physical situations examination of the hydrodynamic
interactions amounts to the friction problem or the mobility problem [4]. In both cases
the particles are immersed in a flow of the surrounding liquid (ambient flow). In the
friction problem the velocities of particles are assumed and the hydrodynamic forces on
the fluid produced by the particles are calculated. This problem appears, for example,
in the determination of Stokes coefficient for a polymer modeled as an agglomerate of
spherical particles [5]–[7]. In the mobility problem one determines the velocities of freely
moving particles and also the hydrodynamic forces acting on the fluid. The particles are
assumed to be immersed in the ambient flow and the external forces may act on them.
Among the situations in which the mobility problem appears, the determination of the
sedimentation coefficient of the suspension can be mentioned [8, 9].

To solve both the friction and the mobility problem one starts with the equations
which govern the dynamics of the suspension. Here we assume linear, stationary Stokes
equations for an incompressible fluid with stick boundary conditions on the surface
of particles. One of the possible approaches to the Stokes equations is the method
of successive approximations [10], also known as the reflection method, developed by
Smoluchowski [11]. It is based on linearity of the Stokes equations. The method consists
in successive superpositions of the single-particle solutions of the Stokes equations chosen
to fulfil the boundary conditions with increasing accuracy. The above procedure leads
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to the solution of the friction problem in a form of the superpositions of multiple
reflected flows. The resulting structure of the solution is called the scattering series.
In the series the single-particle operator plays an important role. In the case of the
friction problem the scattering series has a simple form because there is only one
type of single-particle operator. The situation is more complicated in the mobility
problem. Here four types of single-particle operators are considered [12]. Due to the
difference in the number of single-particle operators, statistical physics considerations
are easier in the case of the friction problem than in the case of the mobility problem.
For the latter, many formulas of the same structure can be found in the literature
[12]–[19].

The aim of the present paper is the reformulation of the mobility problem. The
reformulation results in a scattering series in which only one type of single-particle operator
appears. It enables simplification of the statistical physics considerations relevant to the
mobility problem.

2. Governing equations

The system under consideration consists of N identical hard spherical particles of radius
a immersed in an incompressible, infinite Newtonian liquid with kinematic viscosity
η. The inertia of particles and the inertia terms in the incompressible Navier–Stokes
equations are assumed to be negligible. As a consequence, the fluid is governed by the
steady Stokes equations [4]. We supplement the Stokes equations with stick (no-slip)
boundary conditions on the surface of the particles [20]. Next, following an idea of Mazur
and Bedeaux [21] we extend the Stokes equations inside the particles in the following
way:

∇p(r)− η∆v(r) = f (r), (1a)

∇ · v(r) = 0, (1b)

introducing induced force densities f (r) [22, 23]. Here p(r) and v(r) are the pressure
field and the velocity field of the suspension. The induced force densities are determined
[24] by the condition that the flow of the suspension inside the particles reproduces their
hard-sphere velocity field,

v(r) = Ui(r) = Vi + Ωi × (r −Ri) for |r −Ri| ≤ a, (2)

where Vi and Ωi are translational and rotational velocities of the ith particle, which is
located at the position Ri.

For the case under consideration the force densities f (r) are localized only on the
surface of particles [15, 25], that is

f (r) =
N∑
i=1

fi(r), (3)

with fi(r) localized only on the surface of the ith particle,

fi(r) = −σ · niδ(|r −Ri| − a), (4)

where σ is the stress tensor for the fluid [4], ni is a vector normal to the surface of the
particle i at point r , and δ(x) is the Dirac delta function.

doi:10.1088/1742-5468/2012/11/P11016 3
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The above extension of the Stokes equations allows one to use the Green function
method. The method leads to the expression for the flow of suspension in the whole
space [26],

v(r) =

∫
d3r ′ G0(r − r ′) · f (r ′), (5)

where the Oseen tensor G0 has the following form [27]

G0(r) =
1

8πη

1 + r̂ r̂

|r |
, r̂ =

r

|r |
. (6)

3. Friction problem

In the friction problem the particles are immersed in a liquid in which initially ambient
flow v0(r) is present, and their translational Vi and rotational velocities Ωi are assumed
to be known. The aim of the friction problem is a determination of the force densities
fi(r) induced on the surface of the particles.

For a single particle, the friction problem for a particular type of ambient flow was
solved more than a century ago [10]. It was later generalized for an arbitrary ambient flow
[24, 28]. The solution of the Stokes equations (1) in this case has the form of the following
linear relation [28]

f1(r) =

∫
d3r ′Z0(R1, r , r

′) · (U1(r
′)− v0(r

′)). (7)

The single-particle resistance operator Z0 is localized on the surface of a particle. It
means that the force density f1(r) is localized on the particle surface—consistently with
the equation (4)—and its value depends only on the velocity field U1(r)−v0(r) at points
|r − R1| = a. The details of the resistance operator Z0 can be found in the appendix.
Equation (7) will have the following form in shorthand notation

f1 = Z0(1) · (U1 − v0), (8)

in which the integral variables are omitted and the position of a particle is denoted by its
index. The notation will be extensively used further on.

It is worth mentioning that the single-particle friction problem for a spherical shape
has been solved not only for a hard sphere with stick boundary conditions. Many other
physical situations have also been considered in the literature, e.g. different boundary
conditions [29], permeable particles [30], spherical polymers [31], immiscible droplets
[32, 33] or more complex cases [34, 35]. In general, the relation (8) is still valid but
with a modified Z0 operator.

The concept of the induced force densities and linearity of the Stokes equations allows
one to use the single-particle friction problem to find the solution of the friction problem
for a suspension. In fact, the ith particle in a suspension is surrounded by a flow which
is a superposition of the ambient flow v0(r) and the flow induced by the other particles,∑

j 6=i
∫

dr ′ G0(r , r
′)fj(r

′). Applying this modified ambient flow to equation (8) leads to

doi:10.1088/1742-5468/2012/11/P11016 4
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the following expression

fi = Z0(i) ·

Ui − v0 −
∑
j 6=i

G0fj

 (9)

written in the shorthand notation. This is the formula where one can directly implement
the reflection method by successive iterations. It yields

fi =
N∑
j=1

Zij(1 · · ·N)(Uj − v0), (10)

where the friction operator Zij has the form of the scattering series

Zij(1 · · ·N) = δijZ0(i)− (1− δij)Z0(i)G0(ij)Z0(j)

+
′∑
k

Z0(i)G0(ik)Z0(k)G0(kj)Z0(j) + · · · . (11)

The different terms in the equation (11) correspond to scattering sequences. The prime
symbol indicates summation over k different than neighboring particle indices in the
scattering sequence.

4. Mobility problem

In the mobility problem one considers freely moving particles immersed in an ambient
flow of the fluid v0(r) and subjected to the action of the external forces. The aim of the
problem is to calculate the velocity fields of the particles Ui(r) and also the induced force
densities fi(r) [4].

In order to obtain the solution for a suspension we first analyze the case of a single
particle. Before going into the details, it should be noticed that linearity of the Stokes
equations implies a linear relation between the response of the particle and the source
of a disturbance. Therefore the velocity field of the particle Ui(r) and the induced
forces fi(r) on its surface are linear in the ambient flow v0(r) and the external forces
fext(r),

U1(r) =

∫
dr ′M0(R1, r , r

′)fext(r
′) +

∫
dr ′M<(R1, r , r

′)v0(r
′), (12)

f1(r) =

∫
dr ′M>(R1, r , r

′)fext(r
′) +

∫
dr ′ M̂ (R1, r , r

′)v0(r
′). (13)

Since the above statement is based only on the linearity of the governing equations it is
correct for the different particles and boundary conditions mentioned in section 3. The
single-particle operators M0, M<, M> and M̂ need to be determined for every particular
case. In what follows we discuss hard spheres with stick boundary conditions [12, 16].
From the papers cited here, one can easily infer the form of the M0 ≡ µ0 operator which is
explicitly given in the appendix. The remaining operators are expressed with the following
equations

M<(1) = µ0(1)Z0(1), (14)

doi:10.1088/1742-5468/2012/11/P11016 5
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M>(1) = Z0(1)µ0(1), (15)

M̂ (1) = −Z0(1) + Z0(1)µ0(1)Z0(1) (16)

which were written in the shorthand notation.
Due to linearity of the Stokes equations the above single-particle solution of the

mobility problem can be used to solve the case of a suspension. In the suspension, the ith
particle is immersed in the flow given by a superposition of the ambient flow v0(r) and
the flow generated by other particles,

∑
j 6=i
∫

dr ′ G0(r , r
′)fj(r

′). Assuming this modified
ambient flow in equations (12) and (13) leads to the expressions for the velocity of particles

Ui = M0(i)fext + M<(i)

v0 +
∑
j 6=i

G0fj

 (17)

and the induced force densities in suspension

fi = M>(i)fext + M̂ (i)

v0 +
∑
j 6=i

G0fj

 . (18)

In what follows we rewrite the equations (17) and (18) in the following concise form

si = M (i)

ψ0 +
∑
j 6=i

Gsj

 , (19)

where the response of the ith particle si, single-particle mobility operator M (i), and
external field ψ0 are defined respectively below:

si =

[
Ui

fi

]
, (20)

ψ0 =

[
Fext

v0

]
, (21)

M (i) =

[
M0(i) M<(i)

M>(i) M̂ (i)

]
, (22)

whereas G is generalized Oseen tensor G0:

G =

[
0 0

0 G0

]
. (23)

The method of iterations applied to the equations (19) leads to the following solution of
the mobility problem

si(R1, . . . ,RN) =
N∑
j=1

Tij(R1, . . . ,RN)ψ0, (24)

doi:10.1088/1742-5468/2012/11/P11016 6
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where Tij is given by the scattering series as follows

Tij(R1, . . . ,RN) = δijM (Ri) + (1− δij)M (Ri)GM (Rj)

+
′∑
k

M (Ri)GM (Rk)GM (Rj) + · · · . (25)

It is worth comparing the scattering series given by expression (25) to the scattering series

δijM0(Ri) + (1− δij)M<(Ri)GM>(Rj) +
′∑
k

M<(Ri) ˆGM (Rk)GM>(Rj) + · · ·

(26)

which is considered in the literature [12]. Notice that here four types of single-particle

operators M0, M<, M>, and M̂ appear. With respect to the number of types of single-
particle operators, the formulation of the scattering series (25) introduced in the present
paper is simpler than the series given by expression (26).

It is worth mentioning that no approximation was made in the above analysis. In
particular, equation (19) is a proper starting point to analyze hydrodynamic interactions
of particles in close contact.

5. Discussion

In the present paper the scattering series for the mobility problem has been reformulated,
which results in the simple form given by equation (25). The simplification relies on the
fact that in expression (25) there is only one type of single-particle operator, M . In
the formulation hitherto used in the literature [12], in the scattering series there were

four types of single-particle operator M0, M<, M>, and M̂ , as shown by the expression
(26).

At first sight the difference between both formulations may not seem to be significant.
However, the mobility problem plays a crucial role in, for example, calculations of
transport coefficients of suspensions. In this context statistical physics considerations
contain many different formulas of the same structure [12]–[14], [16]. A striking example
of cumbersomeness following from a lack of a simple formulation of the mobility problem
is the Beenakker–Mazur method [17]–[19], which is used to calculate short-time dynamic
properties of suspensions. A multitude of expressions occurring in cited articles obscures
the essence of the method, which, on the other hand, is the most comprehensive
analytical scheme available so far [36]. Using the reformulated scattering sequence the
Beenakker–Mazur method can be presented in a simple form, as we will show in another
paper [37]. The simple formulation of the mobility problem also allows one to carry out
advanced analysis of scattering series in a clear and simple way. In this context the
formulation will also be used in our subsequent work on macroscopic characteristics of
suspensions.

doi:10.1088/1742-5468/2012/11/P11016 7
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Appendix A. Single-particle operators and multipole picture

Here we give the explicit form of the Z0 and µ0 operators. Based on [25] the Z0 operator
can be expressed by the following formula

Z0(R, r , r
′) =

∞∑
l,l′=1

l′∑
m′=−l′

l∑
m=−l

2∑
σ,σ′=0

δa(r −R)w+
lmσ(r −R)

× [Z0(R)]lmσ,l′m′σ′ δa(r
′ −R)w+∗

l′m′σ′ (r ′ −R), (A.1)

where [Z0(R)]lmσ,l′m′σ′ stands for the multipole matrix with indices l = 1, . . . ,∞; m =

−l, . . . , l; σ = 0, 1, 2. Its matrix elements are explicitly given e.g. in [38]. A set of
multipole functions v+

lmσ(r) and w+
lmσ(r) is defined e.g. in [39] or [25]. Every solution

of the homogeneous Stokes equations may be expressed as a combination of the multipole
functions v+

lmσ(r)

v0(r) =
∞∑
l=1

l∑
m=−l

2∑
σ=0

[v0(R)]lmσ v+
lmσ(r −R), (A.2)

whereas the induced surface force fi(r) is a combination of multipole functions w+
lmσ(r):

fi(r) =
∞∑
l=1

l∑
m=−l

2∑
σ=0

[fi]lmσ δa(r −Ri)w
+
lmσ(r −Ri). (A.3)

The multipole functions w+
lmσ(r) are defined as orthonormal to the v+

lmσ(r) functions.
This orthonormality is expressed in the following way〈

δaw
+
lmσ|v

+
l′m′σ′

〉
= δll′δmm′δσσ′ , (A.4)

with the Dirac notation [40] for the scalar product of two vector fields A(r) and B(r):

〈A|B〉 =

∫
d3r A∗(r) ·B(r), (A.5)

and a scalar function δa(r) of the form

δa(r) = a−1δ(|r | − a)

which confines the integration area to a sphere of radius a.

doi:10.1088/1742-5468/2012/11/P11016 8
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Operator µ0 is given by the expression

µ0(R, r , r
′) =

∞∑
l,l′=1

l′∑
m′=−l′

l∑
m=−l

2∑
σ,σ′=0

Θa(r −R)v+
lmσ(r −R)

× [µ0(R)]lmσ,l′m′σ′ Θa(r
′ −R)v+∗

l′m′σ′ (r ′ −R) (A.6)

with the multipole matrix [µ0(R)]lmσ,l′m′σ′ explicitly given in [38]. Here Θa(r − R) is a
characteristic function of the particle at position R: it equals 0 whenever r points outside
the particle, and equals 1 otherwise.

Finally, we represent equations (17) and (18) in the multipole expansion formalism.
To pass on to the multipole picture we put the expressions (A.1) and (A.6) into these
equations and multiply them by 〈w+

lmσ(i)δa(i)| and 〈v+
lmσ(i)δa(i)| respectively from the

left side. Simple algebra yields

Ui = µ0(i)fext(i) + µ0(i)Z0(i)

v0(i) +
∑
j 6=i

G0(ij)fj

 , (A.7a)

fi = Z0(i)µ0(i)fext(i)− Ẑ0(i)

v0(i) +
∑
j 6=i

G0(ij)fj

 , (A.7b)

where the multipole vector of the ambient flow at point R

[v0(R)]lmσ =
〈
w+
lmσ(R)δa(R)|v0

〉
, (A.8)

multipole velocity field Ui for the ith particle

[Ui]lmσ =
〈
w+
lmσ(i)δa(i)|Ui

〉
, (A.9)

induced surface force multipole fi for the ith particle

[fi]lmσ =
〈
v+
lmσ(i)|Fi

〉
, (A.10)

and external force multipole field fext(R) at point R

[fext(R)]lmσ =
〈
v+
lmσ(R)Θa(R)|Fext

〉
. (A.11)

In the above formulas |A(i)〉 or |A(R)〉 denote vector fields A(r − Ri) or A(r − R)
respectively. Moreover matrix G0(R,R

′) is defined with the formula

[G0(R,R
′)]lmσ,l′m′σ′ = 〈w+

lmσ(R)δa(R)|G0|w+
l′m′σ′ (R′)δa(R

′)〉. (A.12)

Its matrix elements may be found in [38, 41]. It is worth mentioning that
[G0(R,R

′)]lmσ,l′m′σ′ depends on the difference of positions R−R′ and for nonoverlapping

configurations, i.e. |R −R′| ≥ 2a, it scales as 1/|R −R′|l+l′+σ+σ′−1. To obtain equations
(A.7) we also used the following definition [16]

Ẑ0(i) = Z0(i)− Z0(i)µ0(i)Z0(i). (A.13)

doi:10.1088/1742-5468/2012/11/P11016 9
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In the multipole formalism the integral equations (A.7) may be easily reformulated
into equation

si = M(Ri)

ψ0(Ri) +
∑
j 6=i

G(Ri,Rj)sj

 (A.14)

in the same way as equations (17) and (18) were transformed into equation (19). Moreover
the definitions of si, ψ0 and M are similar to the definitions (20)–(22):

si =

[
Ui
Fi

]
, (A.15)

ψ0(R) =

[
fext(R)

v0(R)

]
, (A.16)

M(i) =

[
µ0(i) µ0(i)Z0(i)

Z0(i)µ0(i) −Ẑ0(i)

]
(A.17)

and the Green function G in extended multipole space has the following form:

G =

[
0 0

0 G0

]
. (A.18)
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