
A LETTERS JOURNAL EXPLORING

THE FRONTIERS OF PHYSICS

OFFPRINT

Global non-equilibrium thermodynamics

for steady states like never before
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Abstract – In this Perspective article, we introduce a new framework for the global non-
equilibrium thermodynamics of stationary states. This theory uses the spatial distributions of
temperature, density, velocity, and other variables in stationary states as its input. It outputs
the global state parameters to describe the system’s energy exchange with the environment. The
number of state parameters is determined solely by the type of substance in the system and exter-
nal potentials, regardless of the number of boundary conditions, fluxes within the system, or its
specific geometry. The theory offers a second law of non-equilibrium thermodynamics for station-
ary states, predicting the direction of spontaneous processes between them. When all macroscopic
fluxes reach zero, the theory reduces to equilibrium thermodynamics.

perspective Copyright c© 2025 EPLA

All rights, including for text and data mining, AI training, and similar technologies, are reserved.

Introduction. – The internal energy in equilibrium
thermodynamics depends on a few global state param-
eters, each representing an independent way of energy
change. For an ideal gas, these parameters are entropy
(heat), volume (volumetric work), and particle number
(matter exchange). The number of such parameters must
be determined through experiments and calculations, as
no theory predicts them, especially in non-equilibrium
states. Non-equilibrium states are typically non-uniform,
sustaining energy fluxes through temperature, pressure, or
concentration gradients, which locally define the system’s
state. Key questions arise: Can non-equilibrium station-
ary states be described using global parameters indepen-
dent of spatial coordinates (fig. 1)? Can non-uniform
states be mapped onto uniform ones to identify global en-
ergy exchange modes? Can the first and second laws of
thermodynamics apply to steady states as in equilibrium?
So far, research has been limited to systems close to equi-
librium with minor temperature gradients [1–10]. Here, we
extend the theory beyond near-equilibrium constraints.

Current description of non-equilibrium states. –

The system is in a non-equilibrium state when a macro-
scopic energy flux (in any form) flows across the system.

(a)E-mail: rholyst@ichf.edu.pl (corresponding author)

Fig. 1: The local description of stationary states is based on the
energy density u(r), density ρ(r), temperature T (r), etc. where
r is the position vector. By mapping the non-uniform system
onto the uniform one, we change this local description into the
global description in terms of a few global state parameters.

The most successful theory that explains how thermody-
namic systems sustain the fluxes and how energy flows
across them is called thermodynamics of irreversible pro-
cesses or irreversible thermodynamics [11]. Three conser-
vation laws of mass, momentum, and energy supplemented
with local equations of state taken from the equilibrium
thermodynamics and linear relations between thermody-
namic fluxes and thermodynamic forces form the theory’s
core. The irreversible thermodynamics outputs the spatial
and temporal distribution of density, velocity, tempera-
ture, pressure, etc., in the non-equilibrium state. These
functions follow deterministic trajectories and end up ei-
ther in equilibrium states when the fluxes go to zero or
in stationary states when the fluxes go to a constant
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value sustained by external conditions. Some solutions
of irreversible thermodynamics do not reach a stationary
state but change continuously in time (e.g., oscillatory re-
actions or turbulent states), even without time-dependent
external forces. Extended irreversible thermodynamics
goes beyond the local equations of state and linear flux-
force relations. This theory introduces fluxes as addi-
tional thermodynamic variables (apart from those known
from the equilibrium thermodynamics) [12]. One problem
in extended models is the construction of equations de-
scribing the fluxes. Another route to the local description
of non-equilibrium states is the stochastic thermodynam-
ics [13] and macroscopic stochastic thermodynamics [14].
Stochastic thermodynamics is based on stochastic pro-
cesses and the Master equation. The fluctuation theo-
rems like Jarzynski’s formula [15,16] and its extensions like
Crooks [17,18] formula gave further insight into the experi-
mental study of an ensemble of possible trajectories joining
two equilibrium [19] or steady states [20]. In equilibrium,
statistical mechanics and thermodynamics are intricately
bound. Microscopic and macroscopic descriptions of mat-
ter out of equilibrium of similar duality [21,22] are yet to
be discovered.

Another approach to non-equilibrium thermodynamics
focuses on steady (stationary) states and the transition
between them [1,23–25]. This approach aims to abandon
the local equilibrium hypothesis and introduce the local
steady-state hypothesis. In all these previous approaches,
the system’s state, either in the steady state or in the
transition between the states, was described by parameters
that varied in space and were thus local, according to our
nomenclature.

The local description of non-equilibrium states is given
by the quantities depending on the spatial variable r and
time, t: e.g., velocity v(r, t), number density n(r, t), tem-
perature T (r, t). The equations of irreversible thermody-
namics are the evolution equations for these quantities.
The local description represents the internal energy den-
sity by u(r, t). We assume that the system is locally
at quasi-equilibrium and satisfies the equations of state
known from equilibrium thermodynamics, e.g., for the
ideal gas u(r, t) = 3/2kBn(r, t)T (r, t). In principle, the
boundary conditions set the number of global independent
variables needed to describe the energy change because all
these distributions depend on the boundary conditions.
On the contrary, the description of energy exchange with
the environment in equilibrium thermodynamics is global.
Irrespectively of boundary conditions or processes join-
ing two equilibrium states, the internal energy U(S, V, N)
of the ideal gas is a function of only three global pa-
rameters (entropy S, volume V , and number of parti-
cles N) characterizing the system and its energy exchange
with the environment. These global parameters are called
state parameters. In this Perspective, we will show how
to build a robust, global description of stationary non-
equilibrium states in the same spirit as in equilibrium
thermodynamics.

One important element missing in non-equilibrium ther-
modynamics is the variational principle, similar to the
one known from equilibrium thermodynamics (the second
law). The minimum entropy production [26–28], max-
imum entropy production [29,30], second entropy vari-
ations [31], or minimum energy dissipation [32] have
never reached the same generality as the second law of
thermodynamics for equilibrium states. The minimization
of entropy production or energy dissipation resembles the
minimization of the Lagrangian function known from clas-
sical mechanics. When we minimize the entropy produc-
tion, a functional of density, temperature, concentration,
etc., we get the equations of irreversible thermodynamics
in the steady (stationary) states. Similarly, the minimiza-
tion of a Lagrangian leads to Hamiltonian equations of
motion. Researchers in non-equilibrium thermodynamics
either want to retrieve the equations of motion from the
variational principle or show that a given physical quantity
continuously grows or decreases as the system approaches
the equilibrium or stationary state. The extremum princi-
ple in equilibrium thermodynamics differs from the afore-
mentioned ones because we compare the equilibrium state
to some possible states obtained by imposing constraints
on the system. We answer the following question: which of
all states obtained by various constraints is the most stable
according to the second law? The second law in the energy
language is as follows. The internal energy U(S, V, N, x)
at constant S, V, N is minimized as a function of x at the
equilibrium state, where x is the variable describing con-
straints in the system. Equivalently to the minimum en-
ergy principle, we state that the entropy S(U, V, N, x) has
a maximum as a function of x for constant U, V, N [33].
This article presents the first and second laws for non-
equilibrium steady states using the same methodology as
that used in equilibrium thermodynamics.

Ideal gas in a heat flow. – Here, we show the exact
result for the stationary states of the ideal gas in the heat
flow, leading to global state parameters for this simplest
non-equilibrium system. We investigate the energy change
between non-equilibrium steady states to extend thermo-
dynamics’ first law beyond equilibrium. We assume that
the system has energy mass density, e(r, t), and energy
flux density, Je(r, t), which satisfies the continuity equa-
tion

∂tρe = −∇ · Je, (1)

with mass density ρ(r, t) [11]. The flux Je contains all
possible ways of how the energy flows everywhere in the
system,

Je = ρev + P · v + Jq, (2)

with convection term ρev and fluxes of the energy due
to mechanical work and heat. Here v(r, t) is the velocity
field, P (r, t) is the pressure tensor, Jq(r, t) is the heat flux
density.

We assume that the system starts evolving in time ti
toward another infinitesimally close steady state that is
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reached in time tf . The evolution of the system’s sur-
face, ∂V (t), during the transition is also considered if
needed. The above assumption allows us to determine
the evolution of energy stored at the system’s volume,
E(t) ≡

∫

V (t)
d3rρ(r, t)e(r, t) in terms of fluxes. Because

both states (final and initial) are infinitesimally close, we
define the differential by dE = E(tf )−E(ti) and with the
use of the above assumptions, we obtain [34],

dE = −

∫ tf

ti

dt

∫

∂V (t)

d2r n̂ · Je(r, t). (3)

The following integral gives the exchange of the total en-
ergy. As the total flux has three contributions, convective,
mechanical work, and heat, they determine the division
of how energy can be exchanged with the environment.
For closed systems, the convective term vanishes [34], and
the energy may change solely due to heat and mechanical
work,

dU = d̄Q + d̄W, (4)

where the heat differential is given by

d̄Q = −

∫ tf

ti

dt

∫

∂V

d2r n̂ · Jq(t), (5)

and work differential by

d̄W = −

∫ tf

ti

dt

∫

∂V (t)

d2r n̂ · P · v, (6)

If there is no macroscopic motion in a given steady state,
the kinetic energy of the system does not change, so a
change in the total energy is the same as the change of
the internal energy,

dU = dE. (7)

Here U denotes internal energy of the system, U(t) =
E(t) −

∫

V (t) d3r ρ(r, t)v(r, t)2/2. Moreover, with the lo-

cal equilibrium assumption in the limit of slow transi-
tions (e.g., slowly compressing the system), the dominant
part of the pressure tensor comes from the thermodynamic
pressure, P ≈ p(z), In the heat flow the local pressure is
constant p(z) = p∗ = 2U/3V and eq. (6) reduces to the
work due to the compression of the system

dW = −pdV. (8)

As in equilibrium thermodynamics, the above term has a
straightforward generalization to non-uniform systems in
gravity field [35].

There is no formal difference between equilibrium and
steady state’s energy balance. It is valid for closed systems
with steady heat flow and without macroscopic motion.
Due to the minimal number of assumptions, the presented
first law is also valid for mixtures and systems that un-
dergo steady chemical reactions, as long as the total en-
ergy flux has the form given by eq. (2). In the heat flow,

we found the exact result for the net heat that changes
internal energy [34]: dQ = T ∗dS∗, where T ∗ = 2U

3NkB
and

S∗(U, V, N)

NkB
=

{

5

2
+

3

2
log

[

2

3

ϕ0U

N

(

V

N

)2/3
]}

, (9)

where ϕ0 is a constant. Thus, the internal energy of ideal
gas in a heat flow is described by three state parameters,
U(S∗, V, N): non-equilibrium entropy, S∗, volume V , and
number of particles, N . S∗ is only one part of the total
entropy of the system [34],

Stot

(

U, V, N,
T2

T1

)

= S∗ (U, V, N) + ∆S

(

N,
T2

T1

)

(10)

(defined as the volume integral of a system with volume
entropy density s(z) [34]). The second part

∆S (N, T2/T1) = NkB log

⎡

⎣

(

T2

T1

)5/4
(

log T2

T1

T2

T1

− 1

)5/2
⎤

⎦

(11)
is a function of the entropy production σ =

−A
∫ L

0 dzκ∇T (z) ·∇ 1
T (z) = Aκ

L

(

T2

T1

+ T1

T2

−2
)

[11]. It origi-

nates from the dissipative background sustaining the heat
flux [26,27]. The difference between the total entropy and
S∗ vanishes because ∆S (U, A, L, T2/T1) → 0, when the
system approaches the equilibrium state, T2/T1 → 1. We
underline that only S∗ contributes to the net heat d̄Q.
The entropy production, which enters through ∆S, does
not affect the first law of non-equilibrium thermodynam-
ics (4) at all.

Ideal gas in hydrodynamic flows. – We investigated
the ideal gas’s planar (steady and unsteady) compressible
Poiseuille flows with a cylinder (see fig. 2) placed between
the planes [36]. In the case of an unsteady flow in the sys-
tem, the system’s energy depends, in principle, on eight
variables: time, inlet and outlet pressure, boundary tem-
perature, two spatial coordinates of the cylinder, volume,
and the number of particles. Here, we show numerically
that exactly like in the quiescent case, U(S∗, V, N) is a
function of only 3 state parameters instead of seven pa-
rameters and time. We presented this numerical example
to support the claim in the abstract about the number of
state parameters.

For the steady flow, we analyzed three processes involv-
ing variations in pressure difference ∆p between the inlet
and outlet of the channel, wall temperature T0, and vol-
ume V . We varied only one parameter during each pro-
cess while keeping the others constant. Our observations
showed that the following relation holds in all cases:

dU = T ∗dS∗ − p∗dV + μ∗dN. (12)

Here p∗ = 2U/3V , and μ∗(T ∗, p∗) is the chemical potential
of the ideal gas at temperature T ∗ and pressure p∗. This
result confirms that the internal energy is a function of
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Fig. 2: Velocity profile in a planar Poiseuille flow with an asym-
metrically positioned circular obstacle. The flow oscillates at
increased ∆p, and characteristic von Kármán vortices appear.

the three state variables S∗, V , and N in the case of the
flow of matter across the system and heat flow through the
walls. As an extension, we introduced a circular obstacle
in the channel at position rc. At low values of ∆p, the flow
remains steady, and U depends on the obstacle’s location
through the state variables S∗(rc), V , and N(rc). When
the pressure is increased (and the obstacle is positioned
asymmetrically), the flow becomes oscillatory, displaying
von Kármán vortices in the velocity profile (see fig. 2). In
such oscillatory flows, we demonstrated that the internal
energy depends on time via the state variables S∗ and N ,
and is described as U(S∗(t), V, N(t)).

Global state parameters and the mapping proce-

dure for interacting systems and external poten-

tial. – Here, we will show how to construct the state’s
parameters using a mapping procedure, i.e., mapping a
non-uniform system onto the uniform one (fig. 1) [35]. The
mapping procedure works as follows: We average the dis-
tribution of pressure and total thermal energy over the
system volume and set the global equations of state in the
same form as in equilibrium. The global parameters of
the state emerge according to this procedure. We use the
following general equations: U/V = 〈u(r)〉, p∗ = 〈p(r)〉,
N/V = 〈n(r)〉, where 〈.〉 is the average over the volume,
u(r) is the energy per unit volume and n(r) is the local
number density. In all systems studied the global temper-
ature T ∗ = 〈n(r)T (r)〉/〈n(r)〉.

We consider the ideal gas, van der Waals gas, and the
ideal gas in the gravitational potential confined between
two parallel walls positioned at z = 0 and z = L and
maintained at different temperatures T0 and TL. For the
ideal gas, we get

p =
1

L

∫ L

0

n (z) kBT (z) dz =
NkBT ∗

V
, (13a)

U =
3

2
A

∫ L

0

n (z)kBT (z) dz =
3

2
NkBT ∗. (13b)

These equations define T ∗. The global equations of state
on the right-hand side of eq. (13a) have the same func-
tional form as in the equilibrium state and thus naturally
reduce to equilibrium equations of state in the limit of
zero fluxes and uniform state. The pressure is uniform in
the system, thus p = p∗. The mapping procedure gives
the same formal structure as we know from equilibrium.
Therefore, there is a variable S∗ conjugated to T ∗, which

is the non-equilibrium steady state entropy, eq. (9). It has
the same form as at equilibrium but with T replaced by
T ∗. The internal energy of a non-equilibrium steady state
is thus a function of three parameters of state U (S∗, V, N)
obeying relations

(

∂S∗

∂U

)

V,N

=
1

T ∗
,

(

∂S∗

∂V

)

U,N

=
p

T ∗
. (14)

The mapping is straightforward also in the van der
Waals gas, a system of interacting particles. We integrate
local equations of state and find two new state parameters,
a∗ and b∗ [35]:

U =
3

2
NkBT ∗ −

a∗N2

V
, (15a)

p =
NkBT ∗

V
−

a∗N2

V 2
+

NkBT ∗

V

Nb∗

V − Nb∗
. (15b)

In addition to the effective temperature T ∗ defined by the
same expression as for ideal gases, these new state param-
eters are given by

a∗ = a
V 2

N2

1

L

∫ L

0

dz n (z)
2
,

NkBT ∗

V

Nb∗

V − Nb∗
=

1

L

∫ L

0

n (z) kBT (z)

1 − bn(z)
dz −

NkBT ∗

V
.

(16)

The internal energy of the van der Waals gas in the non-
equilibrium steady state is thus a function of five param-
eters of state U (S∗, V, N, a∗, b∗). Now the form of heat in
the expression for the first law of non-equilibrium steady-
state thermodynamics, d̄Q, acquires additional terms

d̄Q = T ∗dS∗ −
N2

V
da∗ + nkBT ∗

(

V

N
− b∗

)

−1

db∗. (17)

The state parameters a∗ and b∗ appear in the net heat dif-
ferential because, in a non-uniform system, the change in
the density profile leads to the local absorption or release
of heat affecting in this way the net heat.

Global non-equilibrium thermodynamics also describes
the thermodynamic system in the presence of external po-
tential. Consider a column of height L = zL − z0 with
base area A filled with perfect gas (of molar mass M)
placed in a gravitational field with acceleration −gêz. We
will assume that the bottom of the column is immobile.
This restriction can be released, leading to one more state
parameter [37]. The mapping procedure allows the calcu-
lation of the total energy in the system, being the sum of
already known thermal energy and potential energy,

U =
3

2
NkBT ∗ +

NM∗gL

2
, (18)

where the additional state parameter M∗ is defined as the
integral of gravitational potential energy over the system’s
volume,

NM∗gL

2
= A

∫ zL

z0

Mn(z)g(z − z0)dz. (19)
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The external potential introduces anisotropy in pressure.
To change the surface area of the base, one has to overcome
the average pressure inside the column,

p∗ =
NkBT ∗

V
, (20)

while compressing the column requires

p =
NkBT ∗

V
−

NM∗gL

2V
. (21)

As a consequence, the energy differential (4) includes heat

d̄Q = T ∗dS∗ + N
gL

2
dM∗, (22a)

and work

d̄W = −

(

NkBT ∗

V
−

NM∗gL

2V

)

AdL −
NkBT ∗

V
LdA.

(22b)
The new parameter of state M∗ is due to the shift of the
center of mass in the temperature gradient. The mapping
procedure is straightforward for the van der Waals gas in
the presence of gravity [37].

Summarizing: if material parameters exist in the equa-
tions of state like a or b for the van der Waals gas, they
will all become state parameters in stationary states. For
example, in the binary ideal gas mixtures, we get a renor-
malized number of degrees of freedom, f∗, as the state
parameter [38]. In the system of dipoles subjected to an
electric field or magnetic material in the magnetic field,
we expect that electric and magnetic susceptibility will
become state parameters.

The second law of non-equilibrium thermody-

namics: direction of spontaneous processes. –

In our previous sections, we showed that the formal
structure of the first law of the global non-equilibrium
thermodynamics is the same as in the equilibrium thermo-
dynamics. Here, we postulate that the second law for our
thermodynamical description of stationary states also has
the same structure as the one in equilibrium thermody-
namics [37]. For systems that interact only thermally with
the environment, the minimization principle says that
dF = dU − d̄Q ≤ 0, where d̄Q is the infinitesimal heat ex-
changed with the environment when the system goes from
a less stable state to the equilibrium state. Therefore, we
expect that in stationary states, the minimization (fixed
boundary conditions) follows the inequality

dU − d̄Q ≤ 0 (23a)

if we move from a less stable to a more stable steady
state. When the system exchanges heat and work, d̄W ,
in any form with the environment, the second law should
satisfy the inequality

dU − d̄Q − d̄W ≤ 0 (23b)

in non-equilibrium and equilibrium thermodynamics.
How should we understand this law? In equilibrium

thermodynamics, we use the notion of constraints. The
free energy F (T, V, N, x) has a minimum at equilibrium
state as a function of x at constant T, V, N , where x
denotes a constraint, e.g., a location of the movable inter-
nal wall in the system [37]. An external device changes
x and moves the system between states inaccessible by
changing T, V, N alone. This external device performs
work d̄Wz . The first law of thermodynamics states that
dU = d̄Q+d̄Wz . Now dU − d̄Q ≤ 0 means that d̄Wz ≤ 0.
In short, if we move from a less stable state to a more
stable state via the equilibrium/stationary states, the
system does work on the external device. This law sets the
directions of spontaneous processes between equilibrium
and also between stationary states. Generally, a finite
path in parameter space can connect non-equilibrium
steady states. Thus, we must calculate the external work
done along the path Wz =

∫

(dU − d̄Q) ≤ 0. Along
the path, all control and boundary conditions are con-
stant [37]. Additionally, dU − d̄Q is the exact differential
along this chosen path in the space of state parameters.
The extension of the second law to stationary states is a
postulate, but it has been tested in systems with movable
and permeable walls [37]. In the next section, we show
its application to chemical reactions.

Non-equilibrium chemical systems: global sta-

bility of steady states derived from the second

law of non-equilibrium thermodynamics. – Multi-
ple steady states frequently occur in chemical reactors
because the heat generated during reactions changes non-
linearly with temperature. The key question is: which of
these states is the most stable under fixed reactor condi-
tions? Despite more than 100 years of research into out-
of-equilibrium chemical reactions, this question remains
unanswered and is addressed in this section. Here we ap-
ply the second law of non-equilibrium thermodynamics de-
scribed in the preceding section.

We consider an ideally mixed (usual assumption in
chemistry) mixture of NO2 and N2O4 in a photoreac-
tor illuminated with a laser. Only NO2 interacts with
the light, absorbing visible light energy and dissipating
it into heat [39]. The system has a uniform temperature
T = T ∗ different from the temperature of the thermostat
Te. Thus, there is a continuous heat flux from the system
to the thermostat. A simple reaction of dimerization oc-
curs N2O4 ⇋ 2NO2. First, we determine the stationary
states of the system from the energy balance and chemical
equilibrium.

Fulfilling the energy balance condition means that the
energy absorbed from the laser beam by NO2 must equal
the heat exchanged with the thermostat. We assume that
absorption is proportional to light intensity I0 and NO2

concentration n2, whereas heat exchange is proportional
to the temperature difference between the system T and
the thermostat Te. Hence, the energy balance equation
has the form

αI0n2 = β(T − Te). (24)
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Fig. 3: Stationary states of the photoreactor for fixed cool-
ing temperature. For a range of light intensities, there are
three stationary states. The lower branch is called the low-
temperature state, and the upper one is the high-temperature
state. The middle one is locally unstable.

Moreover, chemical equilibrium conditions Kc(T ) =
n2

2

n1

must hold, where Kc(T ) is the equilibrium constant and
n1, n2 are concentrations of N2O4 and NO2, respectively.
They satisfy the relation n1 = n0 − 1

2n2, where n0 is the
constant reflecting the fixed amount of matter in the reac-
tor. If we fix the so-called control parameters (I0, Te), we
have a system of non-linear equations solved for T and n2.
These equations may have many solutions for a range of
control parameters corresponding to multiple stationary
states. Figure 3 presents an example of this phenomenon.
The generalized second law of thermodynamics determines
the globally stable state. Elementary change of the inter-
nal energy is

dU = d̄Q + μ1dN1 + μ2dN2. (25)

The heat d̄Q is the energy absorbed from the laser beam,
and the rest is associated with the chemical reaction.
Hence, the second law has the form

μ1dN1 + μ2dN2 ≤ 0. (26)

We must integrate the above differential form on a path
joining the states to determine work Wz done between
two stationary states corresponding to the same con-
trol/boundary parameters. The path is a continuum of
stationary states. The energy balance equation holds
along it, and the system’s temperature on this path must
be tuned to NO2 concentration. Well-known formulae for
the chemical potential of ideal gas give conditions for the
relative stability of two stationary states:

Wz =
1

2
V

∫ nk
2

np
2

(

∆rG
◦(T (n2))

+RT (n2) log

(

RT (n2)

p0
·

n2
2

n0 − 1
2n2

))

dn2 ≤ 0, (27)

where ∆rG
◦ is the standard reaction Gibbs energy and

p0 = 105 Pa. Function T (n2) is given by condition (24).

Fig. 4: Work of an external device associated with changing the
system’s state from low to high temperature for given control
parameters (cooling temperature and light intensity).

The integral can be evaluated for a range of control pa-
rameters I0, Te. The results are presented in fig. 4. The
green line is the so-called equi-stability line. For control
parameters on this line, integral (27) is zero, so the ex-
ternal device does not perform work to change the sys-
tem’s state. The cold state is more stable on the left of
the line (for low light intensity). The same condition,
eq. (27), was derived by Ross [40] using thermodynam-
ics and stochastic processes. He called the function ob-
tained from eq. (27) a Lyapunov function for the system,
Wz(N2) =

∫

(μ2 − μ1)dN2. This is the external work nec-
essary to move the system from the initial state to some
intermediate state (defined by the number of molecules
N2) along stationary states. We go further. Our prelim-
inary results show that using the mapping procedure, we
can handle the reactor’s non-uniform temperature T (r)
and concentration, n(r) and, moreover, extend the calcu-
lations to flow reactors. In the non-uniform reactor, we
use T ∗ as the effective temperature. Finally, the second
law allows us to define the Lyapunov function for thermo-
dynamic non-equilibrium systems, and thus, our approach
complements the one obtained within stochastic thermo-
dynamics [41].

Summary and future directions. – Our non-
equilibrium thermodynamics is pedagogically explained in
a lecture delivered at the Dream Chemistry Award Com-
petition [42].

The stationary states and equilibrium states do not de-
pend on time. The energy fluxes are zero in equilibrium
states. They are, thus, special cases of stationary states
where fluxes are constant. Therefore, according to the
general physics methodology, a single theory should coher-
ently describe both states. The mapping procedure allows
us to define state parameters and formulate the first and
second laws for equilibrium and stationary states. Our
global non-equilibrium thermodynamics applies to both
types of states. Although we use irreversible thermody-
namics to compute the state parameters and their changes
as we move from one stationary state to the other, the
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formalism does not depend on any specific equations that
lead to the distribution of pressure, density, or temper-
ature. In particular, our theory does not rely on the
linearity of flux-force relations or the local equilibrium
hypothesis, which imposes the local equations of state in
the same way as equilibrium thermodynamics. If some
new non-local equations of state are used in irreversible
thermodynamics, our formalism will not change. We will
only have to integrate the non-local equations of state over
the system’s volume and demand that global equations
of state have the same form as in equilibrium thermody-
namics. In this sense, our formalism is robust and works
arbitrarily far from equilibrium. From theory or exper-
iment, we only need density, temperature, and pressure
distribution in space. What do we gain using the the-
ory? First, we reduce the number of parameters describ-
ing energy exchange with the environment. Irrespectively
of the number of boundary conditions, flow conditions,
or geometry of the system, the ideal gas will always be
described by only three state parameters, and the van
der Waals gas by only five state parameters. Second, the
theory predicts which locally stable stationary states (for
fixed boundary conditions) are globally stable and where
transitions occur, as we showed for the photoreactor. Fi-
nally, our global non-equilibrium thermodynamics reduces
very simply to the equilibrium thermodynamics in zero
flux limit. Our theory offers the same robustness for the
physical systems in stationary states as equilibrium ther-
modynamics in equilibrium states. Moreover, the second
law of global non-equilibrium thermodynamics allows us
to calculate the Lyapunov functions for thermodynamic
systems, enabling further usage in stochastic thermody-
namics.

Data availability statement : All data that support the
findings of this study are included within the article (and
any supplementary files).
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J. Chem. Phys., 157 (2022) 194108.

[35] Ho�lyst R., Makuch K., Giżyński K., Macio�lek A.
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P., Macio�lek A. and Ho�lyst R., arXiv preprint,
arXiv:2403.00463 (2024).
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