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Abstract: We formulate the first law of global thermodynamics for stationary states of the ideal
gas in the gravitational field subjected to heat flow. We map the non-uniform system (described
by profiles of the density and temperature) onto the uniform one and show that the total internal
energy U(S∗, V, N, L, M∗) is the function of the following parameters of state: the non-equilibrium
entropy S∗, volume V, number of particles, N, height of the column L along the gravitational force,
and renormalized mass of a particle M∗. Each parameter corresponds to a different way of energy
exchange with the environment. The parameter M∗ changes internal energy due to the shift of the
centre of mass induced by the heat flux. We give analytical expressions for the non-equilibrium
entropy S∗ and effective mass M∗. When the heat flow goes to zero, S∗ approaches equilibrium
entropy. Additionally, when the gravitational field vanishes, our fundamental relation reduces to the
fundamental relation at equilibrium.

Keywords: thermodynamics; non-equilibrium thermodynamics; gravity; stationary-state; steady-state;
entropy

1. Introduction

Classical equilibrium thermodynamics describes the energy exchange between the
system of interest and the rest of the world called the environment. An important result of
this theory is the fundamental relation, which gives the internal energy, U, as a function of
parameters of state [1,2]. Each state parameter represents one independent way of energy
exchange with the environment. This fundamental relation is sufficient to fully describe
all thermodynamic properties of the system and all thermodynamic reversible processes
taking the system from one equilibrium state to the other. Until recently, such a description
for systems in non-equilibrium states has not been available.

Non-equilibrium states are characterized by macroscopic energy fluxes flowing across
the system. These fluxes are possible only if the system is non-uniform with non-vanishing
gradients of temperature (in the case of heat flow) or pressure (in the case of mass flow). In
our recent contributions, we have found fundamental relations for three different systems
in non-equilibrium stationary states: the ideal gas in a heat flow [3], van der Waals gas
in the heat flow [4] and a binary mixture of ideal gases in the heat flow [5]. Here, we
show the fundamental relation for the ideal gas subjected to the heat flow and gravita-
tional field. Thus, the previous analysis is extended to the non-equilibrium system in the
external potential.

The characteristic feature of the above global thermodynamics in stationary states is
that the fundamental relation is formally the same as in equilibrium but with additional
parameters of state. We approach the construction of non-equilibrium thermodynamics as
follows. First, we identify equilibrium equations of state locally in the non-uniform system.
Next, we average these equations of state over the system’s volume. After averaging,
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we obtain a global equation of state, which we write in the same form as at equilibrium.
However, it includes new state parameters. Under such construction, material parameters
in the equilibrium equations of state become parameters of state in the non-equilibrium state
of the system. For example, in the case of van der Waals gas in a heat flow, U(S∗, V, N, a∗, b∗)
is a function of 5 parameters of state: the entropy S∗, volume V, number of particles N,
and the rescaled van der Waals parameters a∗, b∗. The state parameters, a∗, b∗, together
with S∗, determine the net heat exchange with the environment. The same formal form of
U is valid as in the equilibrium system [2,4]:

U = N
(

V
N
− b∗

)− 1
c

exp
[

S∗ − Ns0

cNkB

]
− a∗

N2

V
, (1)

In the above, the number of degrees of freedom of motion per particle is c, s0 is a constant
and kB is the Boltzmann constant. For a system with a constant number of particles, we get
the differential of U

dU = T∗dS∗ − pdV − N2

V
da∗ + NkBT∗

(
V
N
− b∗

)−1
db∗. (2)

From this equation, the net heat flowing in/out of the system and changing the internal
energy can be identified as:

d̄Q = T∗dS∗ − N2

V
da∗ + NkBT∗

(
V
N
− b∗

)−1
db∗. (3)

The a∗ and b∗ appear in the net heat differential because, in a non-uniform system,
the change in the density profile generally leads to heat absorption or release. The exception
is a process that deliberately keeps d̄Q = 0 while parameters S∗, a∗, b∗ change appropriately.

For the ideal gas in equilibrium in the gravitational field, internal energy U(S, V, N, L)
is a function of the entropy S, the volume V, the number of particles N and the linear size
of the system L along the direction of the gravitational force. In this contribution, we derive
an analogous relation for the same gas column but subjected to the heat flow. The other
purpose of this work is to formulate the first law of global thermodynamics for an ideal gas
in the external field and the heat flow.

2. The Irreversible Hydrodynamics Approach

We consider the gas column with total height L, spanned in z direction from the base
at z0 to the top at zL (L = zL − z0) (Figure 1). In this study, we elucidate the quiescent
stationary situation, where quiescent means a state with no macroscopic motion of the
gas. Therefore, we restrict to the situation with the gravity field g = (0, 0,−g) oriented
along the direction of the heat flux going between the base of the column (kept at constant
temperature T0) and the top of the column (kept at constant temperature TL). In the case
of misalignment, there is no quiescent stationary state in a compressible fluid [6,7]. In
alignment, the quiescent state is possible as long as the Rayleigh-Bennard convection [8–12]
is absent. As we restrict to the quiescent state only, the energy transport results from the
heat conduction in quiescent gas following Fourier’s law [13], which leads to the diffusion
equation for the temperature profile. In such conditions, we observe the translational sym-
metry in x, y directions. However, in contrast to the case of perfect gas [3] and interacting
gas [4] in heat flow, the external field removes translational invariance from the pressure
profile. Thus, we consider the column that has specified surface area A of the column base
and top to point out that performing work at various column positions, be it top, bottom or
sides, has distinguishable energetic consequences.
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Figure 1. The geometry. A column of height L containing N gas particles in a gravitational field
aligned in the z direction. The base (z0) and top (zL) are in contact with temperature reservoirs kept
at two different temperatures: T0 at the base and TL at the top. The column base and top surface area
equals A.

The dimensioned conservation laws of irreversible hydrodynamics for the momentum
and energy for a monatomic ideal gas in stationary (no temporal changes) and quiescent
v = 0 (zero velocity) conditions are [14]

∂z p = −gρ, (4a)

∂2
zT = 0, (4b)

p =
kB
M

ρT, (4c)

u =
3kB
2M

T (4d)

where ρ is gas density, p is thermodynamic pressure, T is temperature, kB is Boltzmann’s
constant, M is the mass of the gas molecule, and u is internal energy density per unit mass.
The Equation (4b) is a second-order linear ordinary differential equation. For the fixed
value boundary conditions (T0 at the base and TL at the top), the following linear solution
is found [15]

T(z) = T0 + (TL − T0)
z− z0

L
. (5)

Substitution of density obtained from (4c) into (4a) leads to the differential equation for the
pressure profile

∂z p = −g
M
kB

p
T

. (6)

It has the following solution

p = p0 exp


−MgL

kBT0

∫ z/L

z0/L

dz′

1 + ( TL
T0
− 1) z′−z0

L


 = p0

(
1 + (

TL
T0
− 1)

z− z0

L

)− MgL
kB(TL−T0)

, (7)
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where p0 = p(z = z0) is the pressure at the ground level. The value of p0 can be calculated
utilizing the constraint on the total mass present in the system

NM =
∫ zL/L

z0/L
AL

Mp
kBT

dz′ = p0
A
g


1−

(
1 + (

TL
T0
− 1)

)− MgL
kB(TL−T0)


, (8)

which gives a pressure profile

p =
NMg

A

(
1 + ( TL

T0
− 1) z−z0

L

)− MgL
kB(TL−T0)

1−
(

1 + ( TL
T0
− 1)

)− MgL
kB(TL−T0)

. (9)

In the above, a barometric formula can be recognized. Specifically in the form extended
to linear temperature profile [16,17]. Such a pressure distribution has a corresponding
density profile

ρ =
Mp
kBT

=
NMg

A
M

kBT0

(
1 + ( TL

T0
− 1) z−z0

L

)− MgL
kB(TL−T0)

−1

1−
(

1 + ( TL
T0
− 1)

)− MgL
kB(TL−T0)

. (10)

3. Energies

We apply the mapping of a non-uniform system into a uniform one (see [3,4]) to
find new state parameters. The solution of local conservation laws contains complete
information about the gas column system. Therefore, we are able to calculate energy
present in the system for a given set of parameters (T0, TL, z0, zL, A, M, N, g). There are two
distinct forms of energy in the system: the energy of the thermal motion of particles and
the gravitational energy of particles, which is also referred to as potential energy. The total
thermal energy is given by

ET = AL
∫ zL/L

z0/L

3kB
2M

ρTdz′ =
3
2

AL
∫ zL/L

z0/L
pdz′ =

3
2

NMgL

1 +
(

TL
T0
−1)

1−
(

1+(
TL
T0
−1)

) MgL
kB(TL−T0)

MgL
kBT0
− TL

T0
+ 1

, (11)

which we use to define a renormalized temperature of the column

ET =
3
2

NkBT∗, T∗ =
MgL

kB

1 +
(

TL
T0
−1)

1−
(

1+(
TL
T0
−1)

) MgL
kB(TL−T0)

MgL
kBT0
− TL

T0
+ 1

. (12)

The gravitational potential energy above the ground level, which for clarity, we set to

Epot,z0 = 0 (13)

is

Epot − Epot,z0 = Epot = gAL2
∫ zL/L

z0/L
ρz′dz′ = NMgL

1 +




MgL
kBT0

1−
(
(

TL
T0
−1)+1

) MgL
kB(TL−T0)




MgL
kBT0
− TL

T0
+ 1

. (14)
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We use the total gravitational energy to define the renormalized mass of the system M∗

Epot =
NM∗gL

2
, M∗ = 2M

1 +




MgL
kBT0

1−
(
(

TL
T0
−1)+1

) MgL
kB(TL−T0)




MgL
kBT0
− TL

T0
+ 1

. (15)

In such a way, we obtained the new state parameter resulting from the mapping procedure.
For the discussion of the meaning of Epot,z0 6= 0 see the Appendix A.

In Figure 2 we illustrate the general behavior of ET and Epot.
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Figure 2. Energies. As a measure of the strength of the gravitational field the ratio of the gravitational
and thermal energies of the single particle MgL

RT0
is used. (a) Thermal energy as a function of TL for

three strengths of the gravitational field. (b) Potential energy as a function of TL for three strengths of
the gravitational field. (c) Thermal energy as a function of the strength of gravitational field for three
values of TL. (d) Potential energy as a function of the strength of gravitational field for three values
of TL.

The gas in the column is subject to gravitational field and heat flux that is, subject to
two distinct forcings. As a result, more than one limiting transition exists.

The first one is when heat flux ceases TL = T0 and we obtain T∗ = T0. Regardless
of the strength of the gravitational field, we find that ET = 3

2 NkBT (Figure 2a). However,
M∗ is not equal to M (Figure 2b) and the potential energy depends on the strength of the
gravitational field. For high TL/T0, thermal energy becomes linear as a function of TL,
but the exact value depends on the gravitational field (Figure 2a). Stronger fields tend
to keep more gas close to the colder (bottom) wall. The effect similar to this for stronger
gravitational fields is visible at low TL. More gas resides close to the warmer (bottom)
wall. The potential energy is strongly influenced by the temperature profile for low TL/T0
(Figure 2b), but as the temperature grows, it reaches a constant value proportional to the
strength of the gravitational field.

The second limiting transition happens when g = 0. We recover exactly the T∗

corresponding to the ideal gas in heat flux as presented by Hołyst et al. [3] (Figure 2c).
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For small gravitational fields in comparison to the thermal energy, but not equal to 0,
the gravitational energy contains the linear term only and M∗ = M (Figure 2d). This
represents the situation of incompressible gas or fluid. When gravity becomes dominant,
the thermal energy converges to the one appropriate for the bottom wall (Figure 2c). Most
of the gas will reside in its vicinity. Interestingly, for the potential energy, there is a limiting
value equal NkBT0 (2/3 in Figure 2d) for all TL. It can be rationalized in the following way:
the increase in the strength of the gravitational field lowers the centre of mass. Therefore,
the gravitational energy inside the column cannot grow indefinitely.

4. Equations of State

In classical thermodynamics, equations of state like

p =
NkBT

V
, U =

3NkBT
2

(16)

that describe the ideal gas are necessary to write the specific form of fundamental relation.
Likewise, global stationary thermodynamics needs its analogues. In a system with potential
gravitational energy imposed by an external field, the total energy stored in the system
consists of both thermal and potential energies

U = ET + Epot =
3
2

NkBT∗ +
NM∗gL

2
. (17a)

Additionally, the following relations between functional forms for pressure and energy
components hold

pav =
2

3AL
ET =

NkBT∗

AL
(17b)

p(zL) =
2

3AL

(
ET −

3
2

Epot

)
=

1
AL

(
NkBT∗ − NM∗gL

2

)
, (17c)

which can be checked by substitution. Also, AL = V can be substituted to obtain a
functional form even closer to (16). Together, Equations (17) form a set of effective equations
of state for a column of a perfect gas in the gravitational field.

Similar effective equations of state exist for the interacting Van der Waals gas [4].
The difference is that here, pressure is not uniform, and that total internal energy U is
increased by the external gravitational potential while the potential energy of particle-
particle interactions diminish it.

5. Fundamental Relation

For equilibrium, in the special case of constant temperature T∗ = T0 = TL, con-
stant number of particles N, and MgL

kBT0
� 1 (yields M∗ = M) one obtains the following

fundamental relation

U =

(
U0 −

NMgL0

2

)(
V
V0

)−2/3
exp

[
2
3

S− S0

NkB

]
+

NMgL
2

, (18)

and its the equivalent form

S =
3
2

NkB ln
U − NMgL

2

U0 − MgL0
2

+ NkB ln
V
V0

+ S0. (19)

The reference values noted by U0 for internal energy, S0 for entropy, L0 for the column’s
height and V0 for the column’s volume. A conceptually similar fundamental relation,
but for a system symmetric with respect to the z0 = 0 i.e., z ∈ (−L, L) can be found in [18].
There are also approaches to formulating the fundamental relation stemming from the
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microscopic arguments and using statistical mechanics approaches [19,20], but these are
limited to constant temperature conditions.

Equations of state (17a)–(17c) for the system with heat flow are formally similar to
the equations of state of an ideal gas in the gravity field in equilibrium. Motivated by
our previous works, where we showed that non-equilibrium systems can be mapped to
their equilibrium counterpart by introducing effective parameters such as non-equilibrium
entropy S∗ and effective interaction parameter a∗ in Equation (1) we explore in this article
whether the fundamental relation of the form (18) is satisfied. In what follows, we postulate
the following fundamental relation

U =

(
U0 −

NM0gL0

2

)(
V
V0

)−2/3
exp

[
2
3

S∗ − S0

NkB

]
+

NM∗gL
2

, (20)

with parameters of state S∗, V, L, N, M∗ and U0, S0, V0, L0, and M0 being reference constants.
By definition, the fundamental relation contains the whole thermodynamic informa-

tion about the system. In particular, it is possible to get the equations of state (17a)–(17c). It
is straightforward to check that it is indeed the case. For example

∂U
∂S∗

∣∣∣∣
A,N,L,M∗

=
2

3NkB
(U − NM∗gL

2
) =

2ET
3NkB

= T∗, (21)

− 1
A

∂U
∂L

∣∣∣∣
S∗ ,A,N,M∗

=
1

AL

(
NkBT∗ − N

M∗gL
2

)
= p(zL),

and

− 1
L

∂U
∂A

∣∣∣∣
S∗ ,A,N,M∗

=
NkBT∗

AL
= pav.

Similar to the equilibrium case, there is an equivalent representation of fundamental
relation (20) in the form of entropy

S∗ =
3
2

NkB ln
U − NM∗gL

2

U0 − NM0gL0
2

+ NkB ln
V
V0

+ S0 (22)

6. Work

Another property of the fundamental relation is that it allows one to identify heat
and work performed on the system. They appear as a result of a transition from one
stationary state to another due to the change of the control parameters T0, TL, z0, zL, A. The
infinitesimal change in total internal energy stored in the column is due to the excess heat
flowing into the column and due to the work exerted on the column’s boundaries [3]

dU = d̄Q + d̄W. (23)

The work can be exerted on the column in three ways that require different forces to
overcome. First, by displacing the base of the column (dz at z = z0). The pressure acting at
the base of the column is

p(z0) = p(zL) +
NMg

A
=

NMg
A

1

1−
(

1 + ( TL
T0
− 1)

)− MgL
kB(TL−T0)

. (24)
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Although in the main text, we do not discuss in detail the consequences of the floor motion,
we elucidate them in the Appendix A. Second, by displacing the upper wall of the system
(dz at z = zL)

p(zL) = p(z0)−
NMg

A
=

NMg
A

(
1 + ( TL

T0
− 1)

)− MgL
kB(TL−T0)

1−
(

1 + ( TL
T0
− 1)

)− MgL
kB(TL−T0)

. (25)

Interestingly, if one displaces both walls in the same way dz0 = dzL, like in the elevator,
they have to overcome the force of gravity acting on the whole column, which equals NMg.
In such action, there are no changes inside the gas column, although it is entirely displaced.
We provide a more detailed discussion in Appendix A. The third method is to change the
surface area dA of the column base and top but keep the height of the column constant.
The force to overcome results from averaging pressure over the whole height of the column

pav =
∫ zL/L

z0/L
pdz′ =

NMg
A

1 +
(

TL
T0
−1)

1−
(

1+(
TL
T0
−1)

) MgL
kB(TL−T0)

MgL
kBT0
− TL

T0
+ 1

. (26)

In summary, the infinitesimal work exerted on the system can be written as

d̄W = Ap(z0)dz0 − Ap(zL)dzL − LpavdA (27)

where the first term has an opposite sign due to the orientation of the z axis with respect
to the body of gas inside the column. For the sake of clarity of the following presentation,
we will assume that z0 = 0 and is fixed, which leads to a simplified expression for the
infinitesimal work (dzL = dL)

d̄W = −Ap(zL)dL− LpavdA. (28)

With Equations (17b) and (17c) we get the following equivalent expression

d̄W = −N
L

(
kBT∗ − M∗gL

2

)
dL− NkBT∗

A
dA. (29)

7. Heat

Finally, we elucidate the functional form of excess heat differential d̄Q. In the energy
balance (23), we substitute (29) for d̄W and use partial derivatives of the fundamental
relation (20)

dU =
∂U
∂S∗

∣∣∣∣
M∗ ,A,L,N

dS∗ +
∂U

∂M∗

∣∣∣∣
S∗ ,A,L,N

dM∗ +
∂U
∂L

∣∣∣∣
S∗ ,A,N,M∗

dL +
∂U
∂A

∣∣∣∣
S∗ ,L,N,M∗

dA

=T∗dS∗ + N
gL
2

dM∗ − N
L

(
kBT∗ − M∗gL

2

)
dL− NkBT∗

A
dA

=T∗dS∗ + N
gL
2

dM∗ + d̄W. (30)

As a result, we obtain

d̄Q = T∗dS∗ + N
gL
2

dM∗. (31)

8. Discussion

Global non-equilibrium thermodynamics describes the system’s energy exchange with
its environment using a few global state parameters. We have presented such a description
for the ideal gas in the gravitational field, subjected to the heat flux in the stationary state.
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The state parameters for such a system are the non-equilibrium entropy, S∗, the volume, V,
the number of particles, N, the system size along the gravitational force, L, and the effective
mass, M∗. The internal energy is the function of these parameters U(S∗, V, N, L, M∗),
irrespective of the size of the system, the number of boundary parameters, the shape of
the system, and the heat flux. We have given analytical forms of S∗ and M∗ for arbitrary
strong gravity and heat flux in the case of a gas column. As a limiting case, we have given
the exact formulas for the system in the gravitational field but without a heat flux. All our
formulas reduce to the equilibrium form of the internal energy when the heat flux goes
to zero. In previous contributions, we have formulated the same global thermodynamic
description for the ideal gas [3], van der Waals gas [4], and ideal gas mixture [5] in the heat
flux. The current development regards the presence of an external potential field. In all
studied cases, we observed that the material parameters such as interaction parameters
(van der Waals gas), the difference between the number of degrees of freedom (gas binary
mixtures), or mass (in the gravitational field) became parameters of state in the heat flow.
We expect the same behaviour in other non-equilibrium systems, e.g., in the system of
dipoles, the electric susceptibility would become the state parameter. In the van der Waals
gas, the additional state parameter and the non-equilibrium entropy describe the net heat
absorbed or released by the system in any process. In the van der Waals gas, the additional
state parameter and the non-equilibrium entropy describe the net heat absorbed or released
by the system in any process. In our case, the net heat is described by the non-equilibrium
entropy and the effective mass parameter. The effective mass additionally describes the
change in the distribution of density and shift of the location of the centre of mass at constant
gravity. The existence of the global thermodynamic description with a well-defined first
law of thermodynamics raises hopes that the second law, which predicts the direction of
spontaneous processes, might as well, be expressed within the same conceptual framework.
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Appendix A. Displacement of the Column’s Base

In the main text, for the sake of clarity, we refrained from discussing the consequences
of the displacement of the base of the column and only indicated their presence. Such an
assumption allowed for a convenient substitution of Epot,z0 = 0 and dz0 = 0. We now allow
for the changes in the position of the column’s base and analyze its consequences. We start
by examining the infinitesimal work. The displacement of the base performs work against
p(z0) = p(zL) +

NMg
A , which together with (29) adds up to

d̄W = −N
L

(
kBT∗ − M∗gL

2

)
dL− NkBT∗

A
dA + NMgdz0 (A1)

The last term contains information about the work that has to be performed in order to
displace the column’s base, keeping its area and height fixed, exactly like in the elevator.
The fundamental relation will also change
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U =

(
U0 −

NM0gL0

2
− NMgz0,0

)(
V
V0

)−2/3
exp

[
2
3

S∗ − S0

NkB

]
+

NM∗gL
2

+ NMgz0. (A2)

to include the energy of the base level Epot,z0 = NMgz0 (the last term) and inside the
bracket its reference value NMgz0,0, where z0,0 is the reference level of the base of the
column. A similar change appears in the entropy representation

S∗ =
3
2

NkB ln
U − NM∗gL

2 − NMgz0

U0 − NM0gL0
2 − NMgz0,0

+ NkB ln
V
V0

+ S0. (A3)

Now we are in the position to write the energy balance

dU =
∂U
∂S∗

∣∣∣∣
M∗ ,A,L,z0,N

dS∗ +
∂U

∂M∗

∣∣∣∣
S∗ ,A,L,z0,N

dM∗ +
∂U
∂L

∣∣∣∣
S∗ ,A,z0,N,M∗

dL +
∂U
∂A

∣∣∣∣
S∗ ,L,z0,N,M∗

dA

+
∂U
∂z0

∣∣∣∣
S∗ ,L,A,N,M∗

dz0

=T∗dS∗ + N
gL
2

dM∗ − N
L

(
kBT∗ − M∗gL

2

)
dL− NkBT∗

A
dA + NMgdz0

=T∗dS∗ + N
gL
2

dM∗ + d̄W. (A4)

In the energy balance, there is an additional term NMgdz0, which introduces another
parameter of state z0 (absolute position of gas column’s base) to the system. It is coupled
with real mass multiplied by the gravitational acceleration NMg. Finally, from the energy
balance, the net heat is found

d̄Q = T∗dS∗ + N
gL
2

dM∗, (A5)

which remains of the same form as (31). The changes in the position of the column’s base
only do not cause any net heat flow in or out of the system.

There is a natural distinction between the roles that the molecular mass M and the
renormalized mass M∗ play in the theory of stationary state thermodynamics. The molecu-
lar mass (multiplied by N) is necessary to couple with a parameter of state z0 to inform
about the energy changes related to the absolute position of the system. Due to the action of
the external gravitational field on the whole system, there is a change in the potential energy
of the system dEpot,z0 , which does not contribute to d̄Q. An analogy is the displacement
of a rigid body in the gravitational field, which changes its potential energy but does not
change the internal structure of the rigid body.

The renormalized mass M∗ informs about the changes in the potential energy due
to the changes in the internal structure of the system. Varying M∗ in most cases (except
processes with d̄Q = 0) causes net heat flux (31) in/out of the system. In the form of the
first law of stationary thermodynamics presented here, we chose M∗ to be a parameter of
state. This is not a unique choice. However, we found it most convenient. Another choice
can be inspired based on the following observations. The change of the internal energy due
to the change of M∗ is currently denoted as

∂U
∂M∗

∣∣∣∣
S∗ ,A,L,z, N

dM∗ =
∂U

∂Epot

∂Epot

∂M∗

∣∣∣∣
S∗ ,A,L,z, N

dM∗ =
∂U

∂Epot

NM∗gL
2

∂M∗

∣∣∣∣∣
S∗ ,A,L,z, N

dM∗ (A6)

Next, we note that L
2 M∗/M is a position of the centre of the mass of the system above

z0 and ratio M∗/M is a relative shift with respect to L
2 . Therefore, we could choose
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x∗ = (M∗/M− 1) (a displacement of the centre of the mass inside the column) as an
equally valid parameter of state leading to

Epot =
NMgL

2
+

NMgL
2

x∗. (A7)

Proposed x∗ is a linear transform of M∗, which, for some applications, may be more
convenient to use. The crucial requirement, however, is that the structure presented using
the M∗ is conserved, and partial derivatives of U with respect to the system dimensions
give correct expressions for pressures pa, p(z0) and p(zL).
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