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Giżyński, K.; Maciołek, A.; Żuk, P.J.
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Abstract: There is a long-standing question of whether it is possible to extend the formalism of
equilibrium thermodynamics to the case of nonequilibrium systems in steady-states. We have made
such an extension for an ideal gas in a heat flow. Here, we investigated whether such a description
exists for the system with interactions: the van der Waals gas in a heat flow. We introduced a steady-
state fundamental relation and the parameters of state, each associated with a single way of changing
energy. The first law of nonequilibrium thermodynamics follows from these parameters. The internal
energy U for the nonequilibrium states has the same form as in equilibrium thermodynamics. For the
van der Waals gas, U(S∗, V, N, a∗, b∗) is a function of only five parameters of state (irrespective of the
number of parameters characterizing the boundary conditions): the effective entropy S∗, volume V,
number of particles N, and rescaled van der Waals parameters a∗, b∗. The state parameters, a∗, b∗,
together with S∗, determine the net heat exchange with the environment. The net heat differential
does not have an integrating factor. As in equilibrium thermodynamics, the steady-state fundamental
equation also leads to the thermodynamic Maxwell relations for measurable steady-state properties.

Keywords: thermodynamics; entropy; steady-state; excess heat; nonequilibria

1. Introduction

The determination of energy and its changes induced by heat or work are necessary to
understand systems such as combustion engines or the Earth’s atmosphere with weather
phenomena. When an equilibrium state approximates a system state, thermodynamics al-
lows one to predict the system’s behavior by using energy as a function of a few parameters
of state and a few principles. In particular, the first law of thermodynamics [1] represents a
global energy conservation law. The energy, U(S, V, N), is a function of entropy, S, volume,
V, and the number of molecules, N. Each variable is related to one independent way of
energy exchange: heat, work, and change in the amount of matter.

In equilibrium thermodynamics, U(S, V, N) is called a fundamental relation [1].
Müller, in his book on the history of thermodynamics, explains its role as follows. “Its
importance can hardly be overestimated; it saves time and money and it is literally worth
billions to the chemical industry, because it reduces drastically the number of measure-
ments” [2]. In the same spirit, Daivis claims that “For this reason alone, it would seem very
desirable to establish a formalism for the thermodynamics of nonequilibrium steady-states
that has the same attractive features” [3].

However, a similarly simple theory does not exist for nonequilibrium systems in
steady-(stationary-)states. There is no description similar to thermodynamics that grasps
the energy transfer to the system in terms of a few global parameters. One of the most-
straightforward nonequilibrium cases is a steady heat flow. The appearance of the heat
flow opens many research directions belonging to various fields of physics. Rational and
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extended thermodynamics focus on local transport equations [4]. Irreversible thermody-
namics formulates thermo-hydrodynamic descriptions with local equations of state and
mass, momentum, and energy balance [5]. Sometimes, it is possible to represent gov-
erning equations in terms of variational principles [6–9], which determine the profile of
thermodynamic fields (such as temperature).

The issue closely related to the studies mentioned above is whether we can repre-
sent the energy of the nonequilibrium system as a function of a few global parameters.
The answer to this question would lead to a description similar to classical equilibrium
thermodynamics. The existence of such a thermodynamic-like description for steady-state
systems has been considered in various studies [3,7,10–13]. The progress [14–17] in this
field is limited to small temperature differences and low heat fluxes. The recent papers on
this topic carry the conviction that general rules exist in nonequilibrium thermodynamics.
However, skepticism regarding the usefulness of the equilibrium-based entropy [18] or even
the existence of a description in terms of thermodynamic-like potentials [19] also appears.

Lieb and Yngwasson [18] expressed skepticism regarding the use of entropy by sug-
gesting heat as a primary quantity. It requires a generalization of heat for steady-states.
However, how can it be generalized, e.g., for a steady gas between two plates with heat
flow in a perpendicular direction? Thermo-hydrodynamic equations describe the system,
so the heat flowing through the surface is well-defined. This applies both for a steady-state
and when the system passes from one stationary state to another. In a steady-state, the same
amount of heat enters through one plate and leaves on the opposite side. The net heat
vanishes. However, the net heat may flow to the system during the transition between
steady-states. This reasoning leads to a concept of heat measured in transition between
stationary (steady-)states. It is a particular case of the excess heat discussed by Oono and
Paniconi [20]. In 2019, Nakagawa and Sasa [21] noticed that the excess heat concept defined
by Oono and Paniconi had yet to be further utilized by other researchers. We adopted the
term net (or excess) heat to name the heat that enters the system and changes its internal en-
ergy during the transition between steady-states. We note that, in the literature, the excess
heat has other meanings [22].

Our recent investigations of an ideal gas in a steady-state with a heat flow showed a
surprising result [23]. We proved that the net heat has an integrating factor and rigorously
calculated nonequilibrium “entropy” and nonequilibrium temperature. This entropy deter-
mines steady adiabatic insulation during transitions between stationary states. However, it
is not clear whether the nonequilibrium entropy exists beyond the ideal gas approximation.
We continued the research to formulate global steady thermodynamics using van der
Waals gas as an example of an interacting system. First, from the thermo-hydrodynamic
equations, we derived the global energy balance. Next, we show that it is possible to
represent the non-homogeneous van der Waals gas in a heat flow with equations formally
identical to the equations of state for the van der Waals gas in equilibrium. This procedure
(named mapping) defines the parameters of the state for the nonequilibrium system in
the steady-state. We also show that the net heat does not have an integrating factor as
proposed by Oono and Paniconi [20]. Instead, the net heat is represented by two indepen-
dent thermodynamic parameters of state in the van der Waals gas. Moreover, we discuss
the experimental determination of the introduced nonequilibrium parameters of state and
experimental predictions based on the steady-state fundamental relation.

2. Van der Waals Gas in Equilibrium

We considered the van der Waals fluid described by the following fundamental ther-
modynamic relation [1]:

U = N
(

V
N
− b
)− 1

c
exp

[
S− Ns0

cNkB

]
− a

N2

V
, (1)

It binds together thermodynamic state functions, i.e., energy U, entropy S, volume V,
and the number of particles N, with two interaction parameters a and b. The number of
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degrees of freedom of a single molecule is given by constant c (c = 3/2 for single atoms);
s0 is a constant that does not appear in the equations of state given further on; kB is the
Boltzmann constant.

In equilibrium thermodynamics, a and b are also parameters of state just like S, V,
and N [24–26]. Therefore, for the van der Waals gas, they are present in the differential of
energy (first law of thermodynamics):

dU = TdS− pdV − N2

V
da + NkBT

(
V
N
− b
)−1

db (2)

with temperature T = ∂U(S, V, a, b)/∂S, pressure p = −∂U(S, V, a, b)/∂V, N2

V = −∂U(S, V,

a, b)/∂a, and NkBT
(

V
N − b

)−1
= ∂U(S, V, a, b)/∂b [1]. Each term in the above expres-

sion corresponds to one way the energy enters the van der Waals gas. d̄Q = TdS is the
heat; d̄W = −pdV is the elementary mechanical work when the volume changes; the last
two terms represent the work of external sources required to change the strength of inter-
actions. Modifications of an interaction parameter are used, e.g., in the thermodynamic
integration methods [27].

In the following sections, we will benefit from the equivalence between the fundamen-
tal thermodynamic relation for the van der Waals fluid (1) and the energy differential (2)
supplemented with the equations of state:

p =
nkBT

1− nb
− an2, (3a)

u = cnkBT − an2, (3b)

where n = N/V is the particle density and u = U/V is the energy density. We will see that
the van der Waals gas with constant parameters a and b out of equilibrium is equivalent to
the van der Waals equations with effective interaction parameters a∗ and b∗, which may
vary with the change of the steady heat flow. Further on, we keep a and b constant.

3. Van der Waals Gas in a Heat Flow

We discuss a simplified van der Waals gas (b = 0) first. Consider the system schemati-
cally shown in Figure 1, a rectangular cavity with a constant amount of particles N.

Figure 1. The schematic of the van der Waals gas between parallel walls separated by a distance L.
The walls are kept at temperatures of T1 > T2, and the density of the spheres represents the variation
of the gas density in the temperature gradient.

We distinguish two parallel walls separated by a distance L in the z direction. The walls
are kept at temperatures of T1 and T2. In other directions, we assumed the translational
invariance, which constitutes a 1D problem. We assumed the local equilibrium, that is
the dynamics of the gas density n(z) is governed by thermo-hydrodynamic equations: mass



Entropy 2023, 25, 1295 4 of 12

continuity, momentum balance, and energy balance equations [5], which are supplemented
with the equations of state (3):

p(z) = n(z)kBT(z)− an(z)2, (4a)

u(z) = cn(z)kBT(z)− an(z)2 (4b)

valid for every coordinate z. In the steady-state, inside the finite 1D segment, the velocity
field has to be equal to 0 everywhere. The constant pressure solution p(z) = const follows.
Another simplification resulting from the stationary condition is the Laplace equation for
the temperature profile with the linear solution [28]:

T(z) = T1 + (T2 − T1)
z
L

. (5)

To determine the concentration profile, we observe that Equation (4a) written locally,
p = nkBT − an2, is quadratic in density. Thermodynamic stability conditions [1] require
that (∂p/∂n)T ≥ 0, which gives kBT − 2an ≥ 0. Therefore, the only physical solution for
the density that satisfies (4a) is given by

n(z) =
kBT(z)−

√
(kBT(z))2 − 4ap

2a
, (6)

and the stability condition, kBT(z)− 2an(z) ≥ 0, with the use of the above expression for
n(z) is reduced to (kBT(z))2 ≥ 4ap. Because the pressure in the system is constant and the
temperature profile is known, Equations (5) and (6) allow us to determine the total number
of particles in the system:

N(T1, T2, A, L, p) = A
∫ L

0
dz n(z) =

ALkB(T1 + T2)

2a
×

×
[

1
2
+

4ap
k2

B
(
T2

2 − T2
1
) ∫ kBT2/

√
4ap

kBT1/
√

4ap
du
√

u2 − 1

]
, (7)

where A is the surface area of the system in the direction of translational invariance.
Similarly, from Equation (4b), we determine the total internal energy:

U(T1, T2, A, L, p) = A
∫ L

0
dz u(z)

= ALp

[
1 +

(c− 1)
√

4ap
kB(T2 − T1)

(
g

(
kBT2√

4ap

)
− g

(
kBT1√

4ap

))]
(8)

with g(x) = 1
3

[
x3 −

(
x2 − 1

) 3
2 − 1

]
.

4. Net Heat for van der Waals Gas and New Parameter of State

In a steady-state, the same amount of heat enters through one wall and leaves through
the other. However, during the transition from one steady-state to another, e.g., by a slight
change of temperature T2 or by the motion of the right wall changing L (see Figure 1),
this balance is, in general, disturbed, and the net heat may flow to the system, changing
its internal energy [23]. In the case of a very slow transition between stationary states,
the energy changes only by means of mechanical work and heat flow:

dU = d̄Q +d̄W. (9)

We keep the interaction parameters a and b constant; therefore, there is no term with da
and db differentials. The effect related to the change of a and b is considered in Equation (2)
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in equilibrium, but for the steady-state situations, we confined ourselves to the change of
the parameters T1, T2, A, L. The mechanical work is given by

d̄W = −pdV. (10)

and the energy balance during the transition between nonequilibrium steady-states has the
following form:

dU = d̄Q− pdV. (11)

The above equation reduces to the first law of thermodynamics in equilibrium. It has the
same form, but here, d̄Q is the net heat transferred to the system during a small change
between two stationary instead of equilibrium states.

We obtain the formal analogy between the equilibrium and stationary state for the van
der Waals gas by integrating the equations of state (4) over the volume:

pV = A
∫ L

0
dz n(z)kBT(z)− Aa

∫ L

0
dz n(z)2, (12a)

U =
3
2

A
∫ L

0
dz n(z)kBT(z)− Aa

∫ L

0
dz n(z)2, (12b)

and by introducing the average temperature:

T∗ ≡
A
∫ L

0 dz n(z)T(z)

A
∫ L

0 dz n(z)
(13)

and the effective potential energy parameter:

a∗ ≡
Aa
∫ L

0 dz n(z)2

ALn̄2 =
a
∫ L

0 dz n(z)2

Ln̄2 , (14)

where n̄ = N/V is the average particle density and ū = U/V is the total energy of the
system divided by its volume. As a result, we obtain two relations:

p = n̄kBT∗ − a∗n̄2, (15a)

ū = cn̄kBT∗ − a∗n̄2, (15b)

which (for b = 0) are formally identical to (3). Because Equation (15) has the same structure
as the equilibrium equation of state, they relate to the fundamental relation (1):

U(S∗, V, N, a∗) = N
(

V
N

)− 1
c

exp
[

S∗ − Ns0

cNkB

]
− a∗

N2

V
, (16)

but with effective parameters. Moreover, the above equation defines S∗, and it has a differential:

dU = T∗dS∗ − pdV − N2

V
da∗, (17)

where T∗ = (∂U/∂S∗)V,N,a∗ , p = (∂U/∂V)S∗ ,N,a∗ and N2

V = −∂U(S∗, V, a∗)/∂a∗. Similar
to the equilibrium thermodynamics, the steady-state fundamental relation (16) is not
unique, because the modification of s0 leads to the same effective equations of state (15a)
and (15b).

The comparison of Equations (11) and (17) gives the relation between the net heat in
the system and the effective entropy:

d̄Q = T∗dS∗ − N2

V
da∗. (18)



Entropy 2023, 25, 1295 6 of 12

The net heat flow during the transition between two steady-states is a combination of the
two exact differentials: effective entropy dS∗ and effective interaction da∗. It is contrary to
the equilibrium thermodynamics, where the heat is determined solely by the temperature
and the change of entropy.

5. The Integrating Factor for Net Heat in the van der Waals Gas in Steady-States Does
Not Exist

We rearrange Equation (11) to obtain the net heat:

d̄Q = dU + pdV. (19)

The energy and pressure can be determined from the stationary solution. Therefore, we
are in a position to ask whether the heat differential d̄Q has an integrating factor in space
T1, T2, V. For the ideal gas (a = 0), the integrating factor exists [23]. It follows that there
exists a function of state that is constant if the steady-state system is “adiabatically insulated”
(i.e., the net heat vanishes, d̄Q = 0).

Wesaythat adifferential form d̄F = f1(x1, x2, x3)dx1 + f2(x1, x2, x3)dx2 + f3(x1, x2, x3)dx3
has an integrating factor if there exists a function φ(x1, x2, x3) whose differential is related
to d̄F by

dφ(x1, x2, x3) ≡ d̄F/µ(x1, x2, x3).

The function µ is called the integrating factor, and φ is called the potential of the form d̄F. The
differential form may be considered in different variables, e.g., given by yi = yi(x1, x2, x3) for
i = 1, 2, 3. We will write in short form as Y(X). It is straightforward to check that, when
the differential form is transformed into new variables, the integrating factor is given by
µ(X(Y)). We can choose the most-convenient set of variables to find the integrating factor
of a differential form.

We considered the space of the control parameters, T1, T2, A, L, N. It has been used
to represent the number of particles, N = N(T1, T2, A, L, p), and the energy in the system,
U = U(T1, T2, A, L, p), given by Equations (7) and (8). To simplify further considerations,
let us notice that the surface area, A, and the length of the system, L, always appear in the
above relations as a product, V = AL. We can reduce the space of the control parameters to
T1, T2, V, N. Because we confined our considerations to a constant number of particles, N,
we have three parameters, T1, T2, V. However, the natural variables of the differential form
(19) are U, V. We will use them in the following considerations, and we took τ = T2/T1 as
the third parameter.

Suppose that the net heat has the integrating factor. This means that there exists a
potential φ(U, V, τ), the differential of is related to the net heat differential by

dφ(U, V, τ) ≡ d̄Q/µ(U, V, τ).

By definition, dφ = ∂φ
∂U dU + ∂φ

∂V dV + ∂φ
∂τ dτ. On the other hand, the above relation with

Equation (19) gives dφ = 1/µ(U, V, τ)dU + p(U, V, τ)/µ(U, V, τ)dV. The equality of the
second derivatives for all three independent variables U, V, τ is a necessary condition for
the existence of φ. It is easy to check that this condition is satisfied only if p(U, V, τ) does
not depend on τ: (

∂p
∂τ

)
U,V

= 0.

Equivalently, if (∂p/∂τ)U,V 6= 0, then the integrating factor of the net heat does not exist.
The above condition requires the determination of p(U, V, τ). The pressure can be

determined from Equations (7) and (8), which have the following form: N = N(T1, T2, V, p)
and U = U(T1, T2, V, p). The inversion of the former relation would lead to the formula
p = p(T1, T2, V, N), but we are not able to obtain explicit expression for p in terms of
elementary functions. However, what we need is not the function itself, but its derivative
over τ. Even if a function is given implicitly, its derivative can be explicitly determined with
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the use of the simple properties of derivatives [1]. We have a similar situation here: although
p(U, V, τ, N) with τ = T2/T1 cannot be explicitly determined from N = N(T1, T2, V, p) and
U = U(T1, T2, V, p), its derivative, (∂p/∂τ)U,V 6= 0, can be determined explicitly. By using
the properties of the derivatives of functions U = U(T1, T2, V, p) and N = N(T1, T2, V, p),
one shows the following property. The derivative (∂p/∂τ)U,V 6= 0 does not vanishes, if the
following conditions are satisfied:

{U, N}T1,T2
6= 0 (20)

and
T2

T1
{U, N}p,T2

+ {U, N}p,T1
6= 0.

In the above expressions, the Poisson bracket is defined by { f , g}x,y ≡ ∂ f /∂x ∂g/∂y −
∂g/∂x ∂ f /∂y. The proof of the above property requires the standard properties of the
derivatives under the change of the variables [1] and is omitted here.

It can be directly checked whether the Poisson bracket (20) does not vanish for func-
tions U = U(T1, T2, V, p) and N = N(T1, T2, V, p) given by Equations (7) and (8). The
calculations are straightforward, but cumbersome. To convince the reader that the Poisson
bracket (20) does not vanish, we considered the limit T2 → T1. It gives the following
expression:

lim
T2→T1

∂

∂T2
{U, N}T1,T2

=

=

(c− 1)k3
BV2

(
kBT1√

ap −
√

(kBT1)
2

ap − 4

)

8a2
(

(kBT1)
2

ap − 4
)3/2 . (21)

It follows that, even in the neighborhood of the equilibrium state, T2 ≈ T1, the above
Poisson bracket does not vanish. As a consequence, the heat differential for the van
der Waals gas has no integrating factor. Thus, a function that plays the role of en-
tropy does not exist for the van der Waals gas in a steady-state with heat flow. The
representation d̄Q = T∗dS∗ is impossible.

It is worth emphasizing that, in our previous paper for ideal gas [23], the fundamental
relation was introduced due to the integrating factor of heat. We do not see how that
method can be generalized to the present case because, as we show in the current paper,
such an integrating factor does not exist for the van der Waals gas. One may wonder
whether the fundamental relation with the parameters of state can be introduced for the
van der Waals gas in a heat flow. However, here, we use a different approach and introduce
the fundamental relation by integrating the local equations of state (mapping).

6. Global Steady Thermodynamics for van der Waals Gas with b 6= 0

So far, we have introduced the global steady thermodynamic description for the van
der Waals gas given by Equation (1) with the reduced parameter, b = 0. Here, we consider
the b 6= 0 case in which the following equations of state:

p =
n(z)kBT(z)
1− bn(z)

− an(z)2, (22)

u(z) = cn(z)kBT(z)− an(z)2, (23)

describe the van der Waals gas in a stationary state. As before, the pressure in the system
is constant. Integration of the above equations over the volume leads to the following
relations:

p =
n̄kBT∗

1− n̄b∗
− a∗n̄2, (24)
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ū = cn̄kBT∗ − a∗n̄2, (25)

where T∗ and a∗ are defined by Equations (13) and (14) while b∗ is defined by the follow-
ing formula:

n̄kBT∗

1− n̄b∗
=

1
L

∫ L

0
dz

n(z)kBT(z)
1− bn(z)

. (26)

Equations (24) and (25) show that the nonhomogeneous van der Waals gas in a
stationary state with a heat flow can be mapped on to the homogeneous van der Waals
gas with effective temperature and interaction parameters, T∗, a∗, b∗. Therefore, it has the
following fundamental relation:

U = N
(

V
N
− b∗

)− 1
c

exp
[

S∗ − Ns0

cNkB

]
− a∗

N2

V
, (27)

with partial derivatives, T∗ = ∂U(S∗, V, a∗, b∗)/∂S∗ and p = −∂U(S∗, V, a∗, b∗)/∂V. The
differential of the above fundamental equation gives

dU = T∗dS∗ − pdV − N2

V
da∗ + NkBT∗

(
V
N
− b∗

)−1
db∗. (28)

Using also the expression for the net heat (19), we identify the heat differential:

d̄Q = T∗dS∗ − N2

V
da∗ + NkBT∗

(
V
N
− b∗

)−1
db∗. (29)

The above equations describe the energy balance for the van der Waals gas with a heat
flow, and they correspond to the first law in equilibrium thermodynamics when the heat
flow vanishes.

The parameters T∗, a∗, b∗ defined by Equations (13), (14) and (26) are not indepen-
dent. To explain it, we keep in mind that, for a given number of particles, three control
parameters T1, T2, V are sufficient to determine the system’s energy, work, and net heat
differential. On the other hand, the energy differential in Equation (28) is given by four
parameters, S∗, V, a∗, b∗. It follows that S∗, V, a∗, b∗ are dependent. Consequently, one of
these parameters should be determined by the others, e.g., b∗ = b∗(S∗, V, a∗).

In the above considerations, the van der Waals gas was enclosed between two parallel
walls. Control parameters T1, T2, V, and N determine the steady-state. In a more-practical
situation, the system does not need to be rectangular, and several temperature parameters,
T1, . . . , Tk, determine the boundary conditions. The same procedure determines the funda-
mental relation (27) because it applies to any density and temperature profile. Even in a
situation with an arbitrary number of control parameters (k > 2), the five parameters of
state S∗, V, N, a∗, and b∗ are sufficient to determine the energy exchange in the system.

Measurements of the temperature and density profiles can determine the effective
interaction parameters and temperature T∗ by Relations (13), (14), and (26). With the
measurements of the net heat and Relation (29), they lead to the determination of the
effective entropy change during transitions between steady-states.

Our considerations were focused on the gas phase of the van der Waals fluid. On
the other hand, it is known that the van der Waals equation of state describes the phase
transition between gas and liquid. The system may have discontinuous density profiles on
the gas–liquid interface. The possible appearance of the liquid phase does not affect the
derivation of the nonequilibrium fundamental relation. Coexisting phases complicate the
solution of thermo-hydrodynamic equations, but do not influence the methodology and
the existence of the effective parameters of state.
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7. Equations of State up to the Second Order in Average Density

We found it impossible to explicitly determine pressure as a function of T1, T2, V, N
from Equation (7). To gain insight into the general ideas discussed in this paper, it is
convenient to deal with analytical expressions. For this reason, we discuss the density
expansion of the van der Waals gas equations of state up to the second order. To facilitate
this analysis, we used T2 and the temperature ratio:

ρ =
T1

T2
, (30)

instead of two temperatures, T1, T2.
We determined the density expansion of the effective parameters of state T∗, a∗, b∗

defined by Equations (13), (14) and (26) from Equations (5)–(7). We obtain

T∗(ρ, T2, n̄) ≈ T2
ρ− 1
log ρ

[
bn̄

(
(1− ρ)2

ρ log2 ρ
− 1

)
+ 1

]

− an̄
kB

(ρ− 1)2(ρ2 − 2ρ log ρ− 1
)

2ρ2 log3 ρ
+ O

(
n̄2
)

, (31)

a∗(ρ, T2, n̄) = a
(1− ρ)2

ρ log2(ρ)
+ O(n̄), (32)

b∗(ρ, T2, n̄) = b + O(n̄). (33)

Equations (31)–(33) are sufficient for the straightforward determination of the van der
Waals equations of state up to the second order in density.

8. Example of Maxwell Relations

One of the predictive features of equilibrium thermodynamics follows from the equi-
librium fundamental relation. The first derivatives of energy, U(S, V, N), are measurable
quantities (cf. pressure as an example), and for this reason, just the symmetry of the second
derivatives leads to physical (Maxwell) relations. From these relations, it follows that,
for example, for a constant number of particles and interaction parameters, one shows that

Cp = CV +
TVα2

κT
, (34)

which means that heat capacities in constant volume and pressure, CV ≡ d̄Q/dT|V,N,a,b
and Cp ≡ d̄Q/dT|p,N,a,b, coefficient of thermal expansion, α = 1

V ∂V/∂T|p,N,a,b, and isother-

mal compressibility, κT = − 1
V ∂V/∂p|T,N,a,b, are not independent [1]. As a result, heat

capacity can be determined by the measurements of other quantities, such as isothermal
compressibility.

In equilibrium thermodynamics for a constant number of particles, the system’s state is
determined by its temperature and density. In a steady-state, the space of control parameters
is wider. In particular, for a gas in a box from Figure 1, the space has one dimension higher,
T2, ρ, n̄. It widens the possibilities of thermodynamic processes. For example, for a constant
volume and the number of particles in equilibrium, we can change only the temperature
of the system. In a steady-state, however, we can change either T1 or T2 or go along any
direction in this two-dimensional space. To demonstrate the predictive possibilities of the
steady-state fundamental relation, let us consider a process with a constant temperature
ratio ρ for the van der Waals gas in the limit of intermediate densities (up to second order in
density expansion). In this situation, Equations (31)–(33) determine the effective parameters
of state, T∗, a∗, and b∗ for given control parameters T1, T2, n̄ or, equivalently, ρ, T2, n̄.
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If ρ = const, from (32), it follows that a∗ = const as well. In this situation, one can
define the corresponding measurable quantities that are generalizations of the equilibrium
ones as follows: steady-state heat capacities for constant pressure and volume:

C∗p ≡
d̄Q
dT∗

∣∣∣∣
p,N,a∗ ,b∗

,

and

C∗V ≡
d̄Q
dT∗

∣∣∣∣
V,N,a∗ ,b∗

;

steady-state coefficient of “thermal” expansion:

α∗ =
1
V

∂V
∂T∗

∣∣∣∣
p,N,a∗ ,b∗

;

steady-state “isothermal” (for constant T∗) compressibility:

κ∗T∗ = −
1
V

∂V
∂p

∣∣∣∣
T∗ ,N,a∗ ,b∗

.

Because the steady-state fundamental relation is the same as in equilibrium, for the thermo-
dynamic path a∗ = const, N = const, we can apply in a straightforward way the reasoning
as in equilibrium [1]. This generalizes Equation (34) to the following expression:

C∗p = C∗V +
T∗Vα∗2

κ∗T∗
. (35)

The above formula predicts the relationship between the steady-state properties. In particu-
lar, for the case of the van der Waals gas up to second order in density discussed above, both
heats should be measured when the temperature ratio ρ is constant, while T2 may change.
In these conditions, determining C∗p requires measuring the excess heat during a small
change of T2. It is worth mentioning that experimental techniques for the measurements
of excess heat have been developed recently [29]. The steady-state “thermal” expansion
coefficient should be measured during the change of T2 with a constant temperature ratio,
ρ = const. The steady-state “isothermal” compressibility should be determined during the
pressure change, keeping both temperatures constant.

It is worth noting that the van der Waals equation of state also describes the equilibrium
behavior of the gas of interacting particles to the second order in the density expansion.
For this reason, the above theory can be tested in molecular dynamics simulations, which
give access to the energy, work, heat flux, density, and temperature profiles for a given
steady-state and during the transition between nearby steady-states. Moreover, the theory
does not rely on the Fourier law for the heat conductivity assumed in this paper, so the
assumption about the linearity of the heat flux with the temperature gradient does not need
to be controlled in the simulations. Instead, the local equations of state (4a) and (4b) must
hold in the simulations.

9. Discussion

A fundamental relation such as Equation (1) plays a key role in equilibrium thermody-
namics. The fundamental relation, by definition, is a relation between the parameters of
the system’s state, from which one can ascertain all relevant thermodynamic information
about the system [1]. It includes the identification of different forms of energy exchange of
the system with the environment. In equilibrium thermodynamics, the particular terms of
the energy differential correspond to heat, mechanical work, or chemical work. In the same
spirit, Equation (27) is the fundamental relation for the van der Waals gas in a steady-state
with a heat flow. Its differential (28) gives information about the net heat and the work
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performed on the system. Equation (28) directly reduces to the first law of thermodynamics
when the heat flow vanishes. It represents the first law of the global steady thermodynamic
description of an interacting system subjected to heat flow.

The integrating factor for the heat differential in the case of the ideal gas discussed
previously [23] allowed us to introduce the nonequilibrium entropy and use it to construct
the minimum energy principle beyond equilibrium. This principle generalizes thermo-
dynamics’ second law beyond equilibrium. Here, we showed that the net heat has no
integrating factor. It excludes a direct generalization of the second law along the line
proposed in [23]. However, it does not exclude the possibility that such a principle also
exists in the case of an interacting gas.

This paper suggested a general prescription for formulating the fundamental rela-
tion of global nonequilibrium steady thermodynamics. First, we identified equilibrium
equations of state. Next, we wrote the local equations of state. Whether these equations
are in the same form in equilibrium thermodynamics or some other form remains to be
found. Next, we averaged these local (or non-local) equations of the state over the entire
system. We insist that the global equations of a nonequilibrium state should have the same
form as at equilibrium, but with new state parameters. These parameters emerge after
averaging the local equations over the entire system. In the case of van der Waals, new
state parameters emerged, a∗ and b∗. These parameters are constant at equilibrium since
they are material parameters that define interactions in a particular system. This result
suggests that, in general, all material parameters in the equilibrium equations of states will
become parameters of state in the nonequilibrium systems.

The out-of-equilibrium fundamental relation introduced in this paper is formally the
same as in equilibrium thermodynamics. It makes it possible to apply the machinery of
equilibrium thermodynamics, which “reduces drastically the number of measurements”
according to Muller’s quote in the introductory section. The generalization of the ther-
modynamic Maxwell relations has made it possible to go further along a similar route
to equilibrium thermodynamics, this time for an out-of-equilibrium steady-state interact-
ing system.

In equilibrium thermodynamics, every way the system exchanges its energy with the
environment is associated with a single parameter of state that appears in the fundamen-
tal relation (e.g., heat—entropy, mechanical work—volume, chemical work—number of
particles). The example of the van der Waals gas in heat flow shows that the net heat is
associated with two or more parameters of state. Fundamental relations for other out-of-
equilibrium steady-state systems may, thus, have several parameters corresponding to
one way of energy exchange. It suggests further direction of the development. However,
a general and systematic method of identifying the nonequilibrium parameters of state and
determining the fundamental relation is an open question.
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