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ABSTRACT
There is a long-standing question as to whether and to what extent it is possible to describe nonequilibrium systems in stationary states
in terms of global thermodynamic functions. The positive answers have been obtained only for isothermal systems or systems with small
temperature differences. We formulate thermodynamics of the stationary states of the ideal gas subjected to heat flow in the form of the zeroth,
first, and second law. Surprisingly, the formal structure of steady state thermodynamics is the same as in equilibrium thermodynamics. We
rigorously show that U satisfies the following equation dU = T∗dS∗ − pdV for a constant number of particles, irrespective of the shape of the
container, boundary conditions, the size of the system, or the mode of heat transfer into the system. We calculate S∗ and T∗ explicitly. The
theory selects stable nonequilibrium steady states in a multistable system of ideal gas subjected to volumetric heating. It reduces to equilibrium
thermodynamics when heat flux goes to zero.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0128074

I. INTRODUCTION

Thermodynamics simplifies the description of equilibrium sys-
tems. It reduces the number of equations of state of materials by
expressing them with one formula in terms of a thermodynamic
potential.1 This simplification also significantly reduces the number
of measurements needed to determine any material’s equilibrium
properties.2 It also determines the equilibrium state of the system
by optimization rules.

For similar reasons, there has been an enormous research effort
to introduce global thermodynamics with optimization rules and
potential-like formulation for steady states.3–29 The progress in this
direction is limited either to the isothermal situations or to the
small temperature differences.22–29 Here, we break this limitation
and show that the steady state thermodynamic description also exists
for a system that is far from equilibrium (with large temperature
gradients).

For a paradigmatic system such as an ideal gas, only three
parameters (entropy S, volume V , and the number of particles N)
are sufficient to determine its state at thermal equilibrium. At a

nonequilibrium state, one has to consider spatially dependent para-
meters, such as temperature T(r), pressure p(r), and density n(r).
A description of such fields appears in De Groot and Mazur’s
monograph on irreversible thermodynamics.30 This description is
based on local conservation laws of mass, momentum, and energy.
With the assumption of local equilibrium and constitutive relations,
irreversible thermodynamics determines the state of the system.

In this paper, we show that within irreversible thermodynam-
ics, there exists a global description of a steady state of an ideal gas in
heat flow. Within this description, the total system’s energy is repre-
sented as a function of S∗, volume V , and the number of particles N.
We formulate thermodynamics of the steady state in the form of the
zeroth, first, and second law and determine S∗ explicitly. Our scheme
for thermodynamics of nonequilibrium steady states is rigorous and
valid for large heat flux.

We illustrate the scheme using a monoatomic ideal gas con-
fined between two parallel walls with different temperatures T1
and T2. Furthermore, we introduce to this system a constraint
in the form of a thin wall separating the gas into two parts, as
shown in Fig. 1. We assume that this internal wall is diathermic
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FIG. 1. Schematic illustration of an ideal gas in a box with an internal wall.

and impenetrable. Considering the system with internal constraints
puts our problem in the perspective of equilibrium thermodynam-
ics as described by Callen, “The single, all-encompassing problem
of thermodynamics is the determination of the equilibrium state
that eventually results after the removal of internal constraints in a
closed, composite system.”1 We show the minimum principle that
determines the stable position of the internal wall.

This description also applies to different shapes of the system,
boundary conditions, and different modes of heat transfer (heat
flows through the system or heat is generated inside the system)
and is valid beyond the regime of linear irreversible thermody-
namics, thus taking into account the temperature-dependent heat
conductivity.

II. IDEAL GAS IN HEAT FLOW
We consider a fluid described by irreversible thermo-

dynamics.30 Therefore, the gas is described by five equations: two
local equations of state and three conservation laws (the continuity
equation, the Navier–Stokes equation, and the energy balance equa-
tion) supplemented by proper boundary conditions. We assume that
the equation of state corresponds to the monoatomic ideal gas. The
gas is confined between two parallel walls at positions 0 and L. We
assume that the system is translationally invariant in x, y directions.
Moreover, the gas satisfies the local equilibrium and is described by
the following equations of state:1

p(z) = n(z)kBT(z), (1)

with Boltzmann constant kB, pressure p(z), particle number density
n(z), and the temperature T(z) at position z. It is worth mentioning
that the local equilibrium is sometimes questioned. However, as we
discuss in the Conclusions section, for an ideal gas, the local equilib-
rium is valid up to extreme temperature gradients of the order of 107

K/cm. The energy equation of state is given by

ϵ(z) =
3
2

n(z)kBT(z). (2)

Here, ϵ(z) is the internal energy volumetric density. We also assume
that in the whole volume V = AL, where A is an area (along x, y)
direction, there are N particles. The boundary condition follows
from the assumption of a given temperature on the walls,

T(0) = T1,
T(L) = T2.

(3)

In the stationary state, the system is described by T1, T2, A, L, N,
which we call the control parameters. We assume that there is no
mass flow for the confined gas in a stationary state. That simplifies
the thermohydrodynamic equations.30 The Navier–Stokes equation
is reduced to a condition of vanishing pressure gradient, ∇p(z) = 0.
The two equations of state follow that the energy density is also con-
stant in space and ϵ = 3p/2. The total energy U is, thus, given by
U = A∫

L
0 dz ϵ = 3ALp/2. We rewrite this expression in terms of the

volume of the system, V , obtaining the relation between pressure
and volume,

p =
2
3

U
V

. (4)

The energy balance equation with the Fourier law for the heat
flux,

Jq = −κ∇T(z), (5)

gives 0 = κ d2

dz2 T(z). With the boundary conditions (3), it yields a
linear temperature profile, T(z) = T1 + (T2 − T1)z/L. With the con-
stant pressure and the equation of state, it determines the density
profile, n(z) = p/kBT(z), and with a given number of particles,
N = A∫

L
0 dz n(z), they determine the pressure,

p =
N
V

kB
T2 − T1

log T2
T1

. (6)

Suppose that the system is in the stationary state described by
parameters T1, T2, A, L, and N. Then, we start changing the tem-
perature T2 to T2 + dT2. After a while, the system reaches another
stationary state, this time described by parameters T1, T2 + dT2, A, L,
and N. We could similarly move one of the system’s walls and
change its length L→ L + dL. The disturbance of the system induces
time-dependent thermo-hydrodynamic flows. They may be complex
(with sound waves, turbulent motion or heat front31) if the change in
the temperature or position of the wall is sudden. Nevertheless, the
possibility of solving thermohydrodynamic equations would allow
one to monitor the change in the internal energy dU, the net heat
d−Q entering the system during the transition, and the work done
d−W. Independent of the rate of change in the control parameters,
the energy balance within irreversible thermodynamics must have
the following consequences in the context of passing from one to
another stationary state:

dU = d−W + d−Q. (7)

The energy change is determined by the control parameters through
Eqs. (4) and (6). As in similar considerations within equilibrium
thermodynamics, the work and heat of the transitions between
steady states depend on the transition rate. However, there is an
essential simplification for the case of slow processes.4 We expect
that the slow change in the boundary condition does not disturb
the homogeneity of the pressure in the system. In the limit of slow
changes, the work done in the transition is given by

d−W = −pdV , (8)
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where dV denotes the differential of the volume of the system.
Therefore, the net heat differential is determined from (7) and (8) by

d−Q = dU + pdV. (9)

We prove it below using thermo-hydrodynamic equations. The
above equation represents the energy balance in the system. It may
be called the first law because it has a form of and it reduces to the
first law of equilibrium thermodynamics when the heat does not flow
through the gas.

III. THE FIRST LAW FOR STATIONARY STATES
IN THE CASE OF THERMOHYDRODYNAMICS

The total internal energy of the gas at given time instant, Ui(t),
in volume V(t) is given by the following integration of its density:

Ui(t) =∫
V(t)

d3r ρ(r, t)u(r, t), (10)

where ρ(r, t) is the density and u(r, t) is the internal energy density
per unit mass at position r and time t. To facilitate our consider-
ations, but without loss of generality, we assume the translational
invariance of the system in x, y directions. Before time ti, the system
is in a stationary state. Then, due to a change in volume V , tem-
peratures T1 and T2, or other external factors, the system is taken
to another nearby stationary state, which is achieved after t f . For
example, between times ti and t f , we slowly change the position of
the right wall by manipulating its position, L(t), such that initially
L(ti) = L changes to L(tf ) = L + dL. That gives the time dependent
volume, V(t) = AL(t), with the total change dV = AdL when pass-
ing from the stationary state at ti to the stationary state at t f . The
differential of the energy (i.e., small change in the energy when
passing to a neighboring stationary state) is given by

dU = Ui(tf ) −Ui(ti),

which we equivalently express as

dU = ∫
tf

ti

dt
dUi(t)

dt
. (11)

With the use of Eq. (10), we get dUi/dt = d
dt ∫V(t)d

3r ρ(r, t)u(r, t).
In this expression, the integral is simplified with the use of x, y
translational symmetry and keeping in mind that V(t) = AL(t) as
follows:

∫
V(t)

d3r ρ(r, t)u(r, t) = A∫
L(t)

0
dz ρ(z, t)u(z, t),

so the time derivative of internal energy reduces to

dUi

dt
= A

d
dt∫

L(t)

0
dz ρ(z, t)u(z, t) = Aρ(L(t), t)u(L(t), t)

dL(t)
dt

+ A∫
L(t)

0
dz

∂

∂t
[ρ(z, t)u(z, t)]. (12)

In the latter integral, there appears the left-hand side of the balance
energy equation (cf. p. 18 in Ref. 30),

∂

∂t
[ρ(z, t)u(z, t)] = −div(ρ(z, t)u(z, t)v(z, t) + Jq),

− P : grad v(z, t), (13)

with velocity field v(z, t), heat flow Jq, and pressure tensor
P = p(z, t)I +Π, where I is the unit three-dimensional matrix and
Π is proportional to velocity gradients. Due to the fact that there
is no velocity field in the system in the stationary state, and
the change in the parameters is slow, we keep only the lead-
ing terms in the velocity field in the above expression, neglecting
the quadratic term, Π : grad v(z, t) ≈ 0. Therefore P : grad v(z, t)
≈ p(z, t) div v(z, t) and the energy balance equation simplifies to

∂

∂t
[ρ(z, t)u(z, t)] = −div(ρ(z, t)u(z, t)v(z, t) + Jq)

− p(z, t) div v(z, t).

Using the above in expression (12), we obtain

dUi

dt
= Aρ(L(t), t)u(L(t), t)

dL(t)
dt

− A∫
L(t)

0
dz div(ρ(z, t)u(z, t)v(z, t))

− A∫
L(t)

0
dz div Jq − A∫

L(t)

0
dz p(z, t) div v(z, t).

The first two terms on the right-hand side give zero, because

∫

L(t)

0
dz div(ρ(z, t)u(z, t)v(z, t))

= ρ(L(t), t)u(L(t), t)vz(L(t), t) − ρ(0, t)u(0, t)vz(0, t)

and because the z-component of the velocity above vanishes for z = 0
and is equal to dL(t)/dt for z = L. The third term, A∫

L(t)
0 dz div Jq

= ∫V(t)d
3r div Jq is the total heat rate that flows to the system, which

is evident after application of the Gauss theorem, ∫V(t)d
3r div Jq

= ∫∂V(t)d
2r n ⋅ Jq. Here, n is the normal vector pointing outside the

surface. We denote the heat rate flowing into the system by

q(t) ≡ −∫
∂V(t)

d2r n ⋅ Jq. (14)

To simplify the fourth term, we use the fact that the pressure in
the system during slow change in parameters is still homogeneous,
p(z, t) = p(t), and therefore, ∫

L(t)
0 dz p(z, t) div v(z, t) = Ap(t)

∫
L(t)

0 dz div v(z, t). This integral is the volume change rate,
dV(t)/dt = ∫V(t)d

3r div v(z, t), and finally for the fourth term,

we get, A∫
L(t)

0 dz p(z, t) div v(z, t) = p(t)dV(t)/dt. Therefore, the
change in the energy (12) simplifies to

dUi

dt
= q(t) − p(t)

dV(t)
dt

.

Utilizing the above in expression (11), we obtain

dU = ∫
tf

ti

dt q(t) − ∫
tf

ti

dt p(t)
dV(t)

dt
. (15)
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We use the dominant term for small changes in parameters (neigh-
boring stationary state) in ∫

tf
ti

dt p(t) dV(t)
dt ≈ p∫

tf
ti

dt dV(t)
dt = pdV .

The above energy differential may be written in the form of (7),
where

d−Q = ∫
tf

ti

dt q(t)

is the total heat transfer to the system and d−W = −pdV is the work
performed on the system during the transition between stationary
states.

It is worth noting that in the above derivation, we did not spec-
ify temperature changes. Therefore, the energy balance (7) is valid
for transitions in the space of V , T1, T2. Equation (7) derived above
is valid under the assumption of slow changes in external parameters
(including the homogeneous pressure condition). In this limit, it
is a rigorous expression. Therefore, if q(t) = 0 in a stationary state
(before ti and after t f ) and both dU and d−W are finite and well
defined (which is exactly the case considered here), then, the net
heat, d−Q, transferred to the system during the transition is finite and
well defined as well.

IV. NONEQUILIBRIUM ENTROPY AS A POTENTIAL
OF THE NET HEAT DIFFERENTIAL

It is worth noting that the net heat introduced above would be
the excess heat considered by Oono and Paniconi.4 In what follows,
we are going to find the integrating factor and the related potential.
As we will see, they define the nonequilibrium temperature and S∗,
which may be called a nonequilibrium thermodynamic entropy.

Before proceeding further, it is worth giving several comments.
First, for constant N, four parameters determine the state of the
system: T1, T2, A, and L. So, the Pfaff form for the heat (9) may
be written in the space of these parameters in terms of dT1, dT2,
dA, and dL. Second, because the pressure in the system is homo-
geneous, we can write the expression for elementary work, d−W
= −pAdL − pLdA, which we shortly write in terms of the volume
of the system, d−W = −pdV . Third, once the integrating factor and
the corresponding potential are found, it is straightforward to rep-
resent them in another set of variables of states. It is easy to check
that the integrating factor in variables X, denoted by λx(X), after
changing the variables of states to Y given by Y(X), transforms to
λy(Y) = λx(X(Y)). Similar holds for the potential corresponding to
the integrating factor. We work in variables U, V , and T2/T1. In
these variables, the heat differential (9) is given by

d−Q = dU +
2
3

U
V

dV + 0 ⋅ d
T2

T1
, (16)

where we explicitly wrote the vanishing third term to remind that
the form is in three-dimensional space, U, V , T2/T1, and used
expression (4) for pressure.

We observe that the heat differential (16) in variables U, V , and
T2/T1 is identical to the heat differential for an ideal gas in equilib-
rium thermodynamics.1 This is a consequence of the fact that both
in equilibrium thermodynamics and in the nonequilibrium station-
ary state considered here, the energy is exchanged in two same ways
(heat and mechanical work) and that the relationship between the
pressure and internal energy for equilibrium ideal gas, p = 2U/3V ,

is identical to formula (4). Therefore, the heat differential has an
integrating factor T∗(U, V , T2/T1) and the corresponding potential,
S∗(U, V , T2/T1),

d−Q = T∗dS∗. (17)

The integrating factor and the potential are not unique. To find
the integrating factor, we observe that formula (16) is the ther-
modynamics first law for a monoatomic ideal gas in equilibrium
thermodynamics. In this case, the integrating factor is the temper-
ature of the system, which for an ideal gas is given by formula
T = 2U/3NkB. For the nonequilibrium case considered here, we
introduce a similar expression, so the integrating factor is given by

T∗ =
2U

3NkB
. (18)

The potential corresponding to the above integrating factor is S∗.
From (16)–(18), the differential of S∗ is given by

dS∗ =
3NkB

2U
dU +

NkB

V
dV.

S∗ is thus given by the following formula: S∗(U, A, L, T2/T1)

= NkB log (U3/2V) + S0, where S0 is a numeric constant. However,
it may depend on parameters of the system, which are not treated
as the variables of state, including the number of particles N, which
we set to be constant in the above reasoning. We determine S0 con-
stant by the condition that S∗ for T2 = T1 gives the equilibrium
expression.1 Therefore, we get

S∗(U, V , T2/T1) = NkB{
5
2
+

3
2

log [
2
3

φ0U
N
(

V
N
)

2/3
]}, (19)

where φ0 is a constant that does not depend on any control
parameter. The above fundamental relation has proper partial
derivatives,

(
∂S∗

∂U
)

V ,N
=

1
T∗

,

(
∂S∗

∂V
)

U,N
=

p
T∗

.
(20)

As a potential of the heat differential, the above S∗ deter-
mines stationary-state adiabats.4 They are different from the adi-
abats defined in equilibrium. Because S∗ does not depend on the
temperature ratio, we see that the change in T2/T1 (keeping U, A, L,
and N constant) changes the temperature profile in the system. It
also changes the heat flowing through the system. However, it does
not trigger the exchange of the net heat. As we show below, T2/T1 is
a parameter that controls the entropy production in the system.

There is a natural question about the relation between S∗ and
the total entropy of the system, S tot = A ∫ dz s(z), where s(z) is the
volumetric entropy density,

s(z) = n(z)kB{
5
2
+

3
2

log [φ0kBT(z)[n(z)]−2/3
]}, (21)
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as given by local equilibrium assumption within irreversible
thermodynamics.1,30 With the use of the linear temperature profile
and density determined above, we obtain

S tot(U, V ,
T2

T1
) = S∗(U, V) + ΔS(U, V ,

T2

T1
),

ΔS (U, V , T2/T1) = NkB log

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(
T2

T1
)

5/4⎛
⎝

log T2
T1

T2
T1
− 1
⎞

⎠

5/2⎤
⎥
⎥
⎥
⎥
⎥
⎦

.
(22)

The above expression is symmetric with respect to the inter-
change of T1 and T2. Only S∗ contains information about heat
absorbed/released in the system [see Eqs. (9) and (17)] on top
of the dissipative background (temperature profile). ΔS, on the
other hand, controls the dissipative background since it depends
on the entropy production given by30 σ = −A∫

L
0 dz κ∇T(z) ⋅ ∇ 1

T(z)
= Aκ

L (
T2
T1
+ T1

T2
− 2). The difference between the total entropy and S∗

vanishes, ΔS(U, A, L, T2/T1)→ 0, when the system approaches the
equilibrium state, T2/T1 → 1. Therefore, S∗ becomes in this limit
the equilibrium entropy.

The relation between the equilibrium entropy and S∗ also sheds
light on the role of the T2/T1 parameter. For an “adiabatically”
insulated system determined by condition S∗ = const, the parameter
T2/T1 changes the total entropy of the system. The change in the
total entropy of the system is associated with the local heat transfer
and work between different subparts of the nonequilibrium system,
even if no work is performed on the system and no net heat enters it.

V. ZEROTH AND SECOND LAW
FOR NONEQUILIBRIUM STATIONARY STATES

In Sec. IV, we showed that a net heat potential, nonequilibrium
entropy S∗, exists for the system without a separating wall. Here, we
consider the existence of the potential in the context of the system
from Fig. 1 with an internal wall. It is a diathermic wall that sep-
arates the gas. We assume that the wall is at position lw and there
are N1 particles to the left and N2 = N −N1 particles to the right of
the wall. An external force, Fw , can move the wall, and some work
is related when the wall moves. As before, the system is described by
thermohydrodynamic equations, this time with additional boundary
conditions on the surface of the separating wall. At the stationary
state, the pressure is homogeneous in each subsystem, but they may
be different due to the action of the force on the wall. In the station-
ary state, Fw = −A(p2 − p1). We assume that the wall is diathermic,
so the temperature profile is the same as for the system without the
wall. The temperature profile does not depend on the action of the
force on the wall. We notice that each subsystem looks like the sys-
tem without the wall, although with different parameters, so we can
use formulas for the system without the wall to describe the system
with the wall.

We describe the system’s energy with the wall using the
state variables for each subsystem, U(S∗1 , V1, N1, S∗2 , V2, N2)

= U1(S∗1 , V1, N1) +U2(S∗2 , V2, N2). The additivity of the energy
is inscribed in the used thermohydrodynamic equations. How-
ever, the additivity of entropy is a postulate of equilibrium
thermodynamics. The nonequilibrium entropy S∗ is not
additive for a nonequilibrium system with heat flow. If the

entropy was additive, then expression Γ(U1, U2, V1, V2, N1, N2)

≡ S∗(U1 +U2, V1 + V2, N1 +N2) − S∗(U1, V1, N1) − S∗(U2, V2, N2)

would identically be zero. Here,

S∗(U, V , N) ≡ NkB{
5
2
+

3
2

log [
2
3

φ0U
N
(

V
N
)

2/3
]} (23)

in agreement with Eq. (19). It is cumbersome to show by explicit cal-
culations that Γ does not vanish. Instead, we calculate the following
expression:

∂

∂U2
[(U1 +U2)U1(

∂Γ
∂U1
)] = −

3
2

N1kB,

which proves that Γ cannot vanish identically. Therefore, S∗ ≠ S∗1
+ S∗2 for most states, and the nonequilibrium entropy is not additive.

One can wonder why the nonequilibrium entropy is not addi-
tive. Yet, the nonequilibrium entropy of each subsystem is given
by the same formula for the equilibrium situation, i.e., Eq. (23). In
equilibrium, the zeroth law of thermodynamics would allow us to
introduce the additive entropy of the whole system when the entropy
of two subsystems is known. The total heat differential is given
by d−Q = d−Q1 + d−Q2 = T1dS1 + T2dS2. This heat differential in the
space of parameters U1, V1, N1, U2, V2, and N2 has no integrating
factor. However, the zeroth law imposes the condition of equal
temperatures, T1 = T2 ≡ T, simplifying the heat differential to d−Q
= T(dS1 + dS2). We see that the function S defined by S ≡ S1 + S2 is
a potential of heat with temperature T as the integrating factor. This
is how the equilibrium zeroth law leads to the additivity of entropy.

For a nonequilibrium system, there is no equality of
subsystems’ temperatures. The equilibrium zeroth law of thermody-
namics is broken. However, let us introduce the following condition
called the “zeroth law of global stationary thermodynamics” for the
ideal gas with a heat flow in the following form:

T∗2 = rT∗1 , (24)

with a constant parameter r. With the above zeroth law condi-
tion, the net heat differential is given by d−Q = T∗1 dS∗1 + rT∗1 dS∗2 . It
appears that it has an integrating factor that is easy to guess. Defining
a function

S∗12 ≡ S∗1 + rS∗2 (25)

allows us to represent the above heat differential by

d−Q = T∗1 dS∗12.

For every given nonequilibrium temperature ratio r, which
appears in the zeroth law condition (24), the above nonequilib-
rium entropy S∗12 splits the space of thermodynamic parameters
U1, V1, N1, U2, V2, and N2 on adiabatically insulated subspaces
parameterized by S∗12.

We are now in a position to verify whether the nonequilibrium
entropy S∗12 can be used to generalize the equilibrium minimum
energy principle to the case with the heat flow. We check whether
the minimization of the energy for constant nonequilibrium entropy
S∗12 leads to the proper position of a movable wall. The verification
requires assuming a constant number of particles, N1 and N2, total
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volume, V = V1 + V2, and nonequilibrium entropy S∗12 given by (25)
and calculate the minimum of the total energy,

U tot(S∗1 , V1) ≡ U1(S∗1 , V1, N1) +U2(
1
r
(S∗12 − S∗1 ), V − V1, N2),

(26)
where

U1(S∗1 , V1, N1) =
3

2φ0
N1(

V1

N1
)
− 2

3
exp [

S∗1
N1kB

−
5
3
] (27)

and is obtained from Eq. (23). U2 is given by a similar formula. The
total energy in Eq. (26) has two independent parameters, S∗1 and
V1. The minimum of the above energy requires the vanishing of the
derivatives over the two independent parameters, which gives

T∗1 −
1
r

T∗2 = 0,

p1 − p2 = 0.
(28)

The above two equations determine the two independent para-
meters. From thermohydrodynamics, we know that the equality of
pressures is the proper condition for the position of the movable
wall. Equivalently, the vanishing of the derivatives of U tot(S∗1 , V1)

leads to

V1 =
V

N2(
r

N1
+ 1

N2
)

,

S∗1 =
N1

N1 + rN2
S∗12 −

5
2

kB
rN1N2

N1 + rN2
log r.

(29)

Consequently, for positive r, arbitrary entropy S∗12, and fixed N1, N2
and V , there is at most one point in space S∗1 , V1 with vanishing
derivatives. Because of the simple form of U tot, it is easy to show that
S∗1 and V1, given by Eq. (29), are at the global minimum. It proves
that the equilibrium minimum energy principle generalizes to the
case with heat flow.

The above application of the “second law” requires constant
N1, N2, and V = V1 + V2, the nonequilibrium temperature ratio r,
and the nonequilibrium entropy S∗12. To realize it experimentally,
one has to know the boundary temperatures T1 and T2 as a func-
tion of S∗12, r, V1, V , N1 and N2. Utilizing Eqs. (4), (6), and (18) leads
to the following nonequilibrium temperatures for both subsystems:

T∗1 =
V1
V (T2 − T1)

log( T1+ V1
V (T2−T1)

T1
)

,

T∗2 =
(1 − V1

V )(T2 − T1)

log [ T2

T1+ V1
V (T2−T1)]

.

Using the above expressions in zeroth law condition (24), we obtain

(1 −
V1

V
) log [1 +

V1

V
(τ − 1)] = r

V1

V
log [

τ
1 + V1

V (τ − 1)
],

with the boundary temperatures ratio τ = T2/T1. The above relation
implicitly determines the boundary temperature ratio as a func-
tion of V1/V , i.e., τ = τ(V1/V). Because this relation is implicit, it

is impossible to determine T1(S∗12, r, V1, V , N1, N2) explicitly. How-
ever, having τ(V1/V), we may use expressions (23)–(25) and (20) to
determine T1(S∗12, r, V1, V , N1, N2).

It is straightforward to generalize the above conclusions for any
system shape and temperature profile. The reason for that is the fact
that a particular form of the temperature profile does not play a role
in the above calculations—the existence of the global steady state
thermodynamics follows in the considered case from the fact that
the pressure is constant and it is a function of energy and volume,
here p = 2U/3V . The ideal gas in the box volumetrically heated and
separated by a movable wall considered by Zhang et al.17 also has
these properties. Therefore, the steady state global thermodynamics
formulated here also holds for the Zhang et al.17 system, describ-
ing the continuous phase transition they consider. We describe the
Zhang et al. case in Sec. VI.

VI. IDEAL GAS UNDER VOLUMETRIC HEAT SUPPLY
For the volumetrically heated gas, the heat rate in Eq. (14) does

not vanish in the stationary state, q(t) ≠ 0. Zhang et al.17 consider
ideal gas with uniform volumetric heating λ. In this case, in the
energy balance (13) there appears to be the source term λ on the
right-hand side. As a consequence, Eq. (15) is modified in the follow-
ing way: dU = ∫

tf
ti

dt q(t) − ∫
tf

ti
dt p(t) dV(t)

dt + λ∫
tf

ti
dt V(t), where, as

before, we take the dominant term in, ∫
tf

ti
dt p(t) dV(t)

dt ≈ pdV , and
obtain

dU = ∫
tf

ti

dt q(t) − pdV + λ∫
tf

ti

dt V(t).

Using the above and defining

d−Q = ∫
tf

ti

dt q(t) + λ∫
tf

ti

dt V(t), (30)

we obtain Eq. (7). It is worth commenting on the fact that for λ ≠ 0,
both the net heat ∫

tf
ti

dt q(t) and the second term in the right-hand
side of the above expression are infinite in the limit of long transi-
tion between two neighboring stationary states. However, their sum
is finite. In this system, the heat constantly flows out of the system,
q(t) ≠ 0. The outflow is balanced by the generation of heat within
the system as given by the heat generation rate, λV(t). In Oono
and Paniconi4 terminology, d−Q is the excess heat and λV(t) is the
house-keeping heat rate. The above equation is interpreted as the
“renormalization” of the heat rate to obtain the excess heat.4

Zhang et al.17 considered an ideal gas between two parallel walls
of area A located at z = −L and z = L. The system is translationally
invariant in the x and y directions. The walls are kept at a fixed
temperature T0 and the energy is supplied into the system’s volume
in the form of heat with flux J; the supplied energy per unit time
and unit volume V = 2AL is λ = J/V . The steady state temperature
profile can be obtained from the local continuity equation of energy,

− κ
∂2

∂z2 T(z) = λ, (31)

with the boundary conditions T(0) = T(L) = T0, giving

T(z) = −
λ

2κ
z2
+

λ
2κ

L2
+ T0. (32)
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At the steady state, the pressure p and, hence, also the energy density
ϵ are constant. With the use of the equation of state, this determines
the density profile,

n(z) =
p

kBT(z)
=

2
3

ϵ
kBT(z)

. (33)

Using

N = A∫
L

−L
dz n(z), (34)

for a given number of particles N, the energy U = ϵV is obtained as

U =
3
2

NkBT0 f(λ ⋅
L2

κT0
), (35)

where a dimensionless function f is given by

f (x) ≡
√

x(x + 2)/(2 tanh−1√x/(x + 2)). (36)

Using the volumetric entropy density of an ideal gas given by
Eq. (21), we obtain

S tot(U, A, L, N, λ) = S∗ (U, V , N) + ΔS (U, A, L, N, λ),

where S∗(U, V , N) has a form given by the RHS of Eq. (19) and

ΔS(U, A, L, N, λ) = −(5/2)NkB log [f (λ ⋅
L2

κT0
)]

+ (5/3)ϵA∫
L

0
dz

log [T(z)/T0]

T(z)
. (37)

In the above formula, T0(U, A, L, N, λ) is implicitly given by Eq. (35).
The temperature profile is a quadratic function of distance z; there-
fore, the integral in the above equation cannot be expressed in terms
of elementary functions. Nevertheless, as for the case discussed in
Sec. IV, the nonequilibrium entropy differs from the total entropy in
the system.

Now, we introduce a movable adiabatic wall parallel to the
bounding walls at z = zw . At equilibrium, the wall is located pre-
cisely in the middle of the system zw = 0. As shown in Ref. 17, for
small heat fluxes, the position of the wall at zw = 0 is stable. Above
a critical flux, the wall moves toward one of the bounding surfaces.
Let us consider the second law of nonequilibrium thermodynamics
discussed above for this system. Integration of the equation of state
for the ideal gas [Eq. (33)] in each subsystem 1 and 2 leads to

p1,2 =
2
3

U1,2

V1,2
, (38)

and for each subsystem, Eq. (16) is satisfied (with the replacement
T2/T1 → λ). This implies the existence of nonequilibrium entropy
and nonequilibrium temperature given by formulas (18) and (19).

Consequently, the reasoning leading to the minimum principle
is the same. The only difference is that instead of two temperatures

T1 and T2, we have here a single temperature T0 of the confin-
ing walls and the volumetric heating rate λ. The nonequilibrium
temperatures in this case are given by

T∗1 = T0 f(
λL2

1

κT0
)

T∗2 = T0 f(
λL2

2

κT0
),

(39)

where L1 = L + zw and L2 = L − zw and function f given by (36). In
this case, the minimization of energy (26) also leads to the equality
of pressures. It proves that ideal gas with volumetric heating can also
be described with three laws of global stationary thermodynamics
introduced in Sec. V.

The minimization principle introduced in Sec. V also leads to a
single global minimum with the zero law condition and equality of
pressures given by (28). Interestingly, as discussed by Zhang et al.,
this system exhibits a continuous phase transition from a one stable
steady state with the wall in the middle of the system to the two sta-
ble stationary states with the mirror symmetry. On the other hand,
the minimization procedure leads to only one stable state. However,
the zeroth law condition, r = T∗2 /T

∗
1 , breaks the symmetry. Applica-

tion of formulas (39) in the zeroth law condition, r = T∗2 /T
∗
1 , leads

to the conclusion that for V1 < V2, parameter r takes only values
r > 1. Whereas for V1 > V2, the temperature ratio satisfies 0 < r < 1.
Therefore, setting r limits the motion of the wall to half of the system.
The second stable minimum is obtained by replacing r with 1/r.

VII. CONCLUSIONS
It is straightforward to generalize the above conclusions for the

situation with the temperature-dependent heat conductivity, κ(T),
which is beyond the scope of linear irreversible thermodynamics.
The temperature-dependent heat conductivity modifies the Fourier
law (5) and the temperature profile. However, it does not affect the
relation, p = 2U/3V . Therefore, the relation (16) holds and it is pos-
sible to repeat the reasoning presented above without any changes
and obtain S∗ given by Eq. (19) and the nonequilibrium tempera-
ture (18). It is worth noting that the assumption of local equilibrium
for the ideal gas is valid as long as the temperature gradient is suffi-
ciently small, lfp∣∇T∣/T ≪ 1, for the mean free path of the molecules,
l fp.32 At the pressure of 1 bar at room temperature, the mean free
path is of the order of l fp ≈ 100 nm. The local equilibrium is satisfied
as long as the temperature gradient is lower than ten million Kelvins
per centimeter.

We draw several conclusions from the rigorous calculations
performed above within irreversible thermodynamics. Even for the
system with heat flow, which is far from equilibrium (significant
temperature difference), global steady state thermodynamics exist.
This is for ideal gas closed in a vessel of any shape and does not
depend on the mode of the heat transfer (heat flows through the
system or the system is heated volumetrically). The considered
examples also show that S∗ that governs the net heat is independent
of the entropy production, in agreement with Eq. (22).

At least since the works of Prigogine, scientists have tried to
formulate a thermodynamic-like description of nonequilibrium sys-
tems. Here, we show that it exists for a stationary ideal gas with
heat flow. The question remains open for interacting systems and
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systems with kinetic energy. From the perspective of future efforts,
the case of ideal gas considered here shows that the local entropy
integrated over volume is not a quantity that determines the heat
in the system—a possibility discussed recently.27 Moreover, the con-
sidered case shows that the nonequilibrium entropy, defined as heat
potential, is not additive.
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