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Internal energy in compressible Poiseuille flow
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We analyze a compressible Poiseuille flow of ideal gas in a plane channel. We provide the form of internal
energy U for a nonequilibrium stationary state that includes viscous dissipation and pressure work. We demon-
strate that U depends strongly on the ratio �p/p0, where �p is the pressure difference between inlet and outlet
and p0 is the outlet’s pressure. In addition, U depends on two other variables: the channel aspect ratio and the
parameter equivalent to Reynolds number. The stored internal energy, �U = U − U0, is small compared to the
internal energy U0 of the equilibrium state for a moderate range of values of �p/p0. However, �U can become
large for big �p or close to vacuum conditions at the outlet (p0 ≈ 0 Pa).
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I. INTRODUCTION

Poiseuille flow has been studied extensively for years [1]
as it is ubiquitous in nature and essential from the application
point of view [2–6]. However, most of these studies focus on
velocities or pressure distribution in the flow while ignoring
changes in internal energy compared to the equilibrium state,
e.g., due to inhomogeneous temperature. Such approxima-
tions are especially common in the studies of the compressible
version of the flow as it is described by nonlinear equations
and difficult to calculate analytically [7–14]. Frequently, ei-
ther the problem is simplified to the isothermal case [7,9–13]
or the analysis is limited to the determination of approximate
temperature profiles [8,14].

However, systems under flow are essentially nonequilib-
rium systems, and their macroscopic behavior can be closely
related to thermodynamic quantities. For example effects such
as heating due to viscous dissipation can become important in
microchannel flows [15,16]. Furthermore, part of the energy
supplied externally to sustain the flow can be stored inside
the system in the form of internal energy. In our opinion,
this energy excess �U can be essential in explaining the
macroscopic behavior of the system even though it is small
compared to the total internal energy in the equilibrium state
(ES) [17]. Thus, the knowledge of the exact expression for the
internal energy and its relevant parameters can be crucial in
explaining phenomena so complicated as turbulence.

The current paper is a continuation of our studies on energy
stored in stationary states of nonequilibrium systems [17–19].
In our previous paper, we analyzed a closed, nonequilibrium
system that exchanges energy with the environment only in
the form of heat [17]. We found that its internal energy has
the following structure:

U = U0 f , (1)

*rholyst@ichf.edu.pl

where U0 is the internal energy in equilibrium, and f is a
dimensionless function. In a further study, we focused on
Poiseuille flow of incompressible ideal gas between two par-
allel plates where only viscous dissipation was responsible for
internal energy changes [18]. We found that for such system
U can be expressed by the following equation:

U = U0

(
1 + 1

240

�p2L4
y

μkT0L2
x

)
, (2)

where �p is the pressure difference between the inlet and the
outlet, Lx and Ly correspond to the length and the width of
the channel, μ and k represent dynamic viscosity and thermal
conductivity of the gas, respectively, while T0 denotes the
temperature of the wall used as a boundary condition for
nonequilibrium stationary state (NESS). Here we analyze if a
similar form can be applied to describe internal energy in the
compressible flow of ideal gas where both viscous dissipation
and pressure work are present.

II. MODEL AND METHODOLOGY

In the present paper we numerically study compressible
Poiseuille flow of an ideal gas through a channel in two spatial
dimensions. We focus on the stationary state. For monoatomic
ideal gas, the three conservation laws for the mass, the mo-
mentum and the energy governing the behavior of the system
in the stationary state, are given by [20,21]:

∇(ρ�u) = 0, (3)

ρ�u · ∇�u = −∇p + ∇ · [
μ

(∇�u + (∇�u)T − 2
3 (∇ · �u)I

)]
, (4)

ρcp�u · ∇T = ∇ · (k∇T ) + �u · ∇p + �, (5)

where ρ is the density, �u is the velocity field vector, p is the
pressure, I is the identity three-dimensional matrix, cp is the
specific heat capacity at constant pressure, and T is the tem-
perature. For the compressible fluid, the viscous dissipation
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FIG. 1. Geometry and boundary conditions (BCs) of the modeled system. Flow profile at the entrance is fully developed with the average
pressure set to the value pav. Ly and Lx denote width and length of the channel, respectively. Inlet and the channel’s sidewalls are thermostated
at T = T0. We applied zero heat flux BC across the outlet (Jqout = 0).

function � has the following form:

� = [− 2
3μ∇ · �uI + μ

(∇�u + (∇�u)T )]
: ∇�u. (6)

Additionally, there are two equations of state describing
ideal gas:

RT ρ = M p, (7)

U = cvnMT, (8)

where R is the gas constant, M is the mean molar mass, cv

corresponds to specific heat capacity at constant volume, and
n is the number of moles. The equilibrium values of thermody-
namic quantities are denoted by p0, T0, ρ0 and U0 = cvn0MT0.
We assume the local equilibrium at steady state. The sketch of
the system and the boundary conditions (BCs) are shown in
Fig. 1.

Equations (3)–(5) are solved using COMSOL MULTIPHYSICS

5.4. Because the system is symmetric, it is sufficient to con-
sider the planar compressible Poiseuille flow in a half of the
channel only. We assume a fully developed inlet velocity
profile i.e. the gas has established parabolic velocity pro-
file already at the entrance of the channel, see Fig. 1. The
temperature at the inlet is uniform and equals to T0 and it de-

velops along the channel. We also assume no heat flow at the
outlet.

The accuracy of the numerical simulations was con-
trolled using two parameters: relative tolerance and the
number of mesh elements. The first parameter is a conver-
gence criteria value for iterative solver. Iterative processes
within the solver sequence continue to iterate on the solu-
tion attempt until the calculated relative error approximation
drops below the pre-specified relative tolerance. For the data
shown Figs. 2 and 3 relative tolerance was set to 1 × 10–4

and the employed mesh was rectangular with a size of
200 × 500 elements (width × height). Values of internal en-
ergy shown in Fig. 4 were extrapolated from three different
meshes: 200 × 500, 240 × 600 and 320 × 800 and relative
tolerance equal to 1 × 10–8.

In the horizontal direction we have distributed the mesh
elements in a symmetrical geometric sequence with the
symmetry axis at Lx/2. For vertical direction, we applied
arithmetic distribution. The element size ratio of the largest el-
ement in the sequence to the smallest one was set to 10 in both
directions. As a result, we obtained the highest refinement at
the boundaries of the channel. For the size of the channel
Lx = 0.5 m and Ly = 0.05 m, this yields �x ≈ 4 mm and

FIG. 2. (a) Velocity in the flow direction and (b) the temperature profile calculated using material parameters for He. The values of
other parameters are: Lx = 0.5 m, Ly = 0.025 m, T0 = 300 K, μ = 2.0048 × 10–5 Pa s, k = 0.152 W m–1 K–1, p0 = 1 atm, �p = 0.5 Pa.
The profiles correspond to a fully developed flow and temperature profiles and are compared to the analytical solution adopted from Ref. [29].
The maximal absolute errors equal to (a) |u|err = 4.5 × 10–5 m s–1 and (b) |T − T0|err = 3.5 × 10−8 K.

055107-2



INTERNAL ENERGY IN COMPRESSIBLE POISEUILLE … PHYSICAL REVIEW E 104, 055107 (2021)

FIG. 3. Dependence of �U/U0 on �p
p0

obtained from numerical
model and its linear fit (equation and coefficients shown in the
legend). Each point on the plot corresponds to a single simulation
with a unique set of parameters varied arbitrarily within the following
ranges: �p from 0.001 Pa to 0.08 Pa, p0 from 0.2 atm to 2 atm, T0

from 50 to 2342 K, Lx from 0.5 to 8.4 m and Ly from 0.05 to 0.1 m.
The exact algorithm of selecting parameter values is described in the
SM.

�y ≈ 0.1 mm at the center, �x ≈ 1.5 mm at the inlet and the
outlet and �y ≈ 0.01 mm close to the sidewall. The greatest
refinement at the boundaries and two types of distributions for
both directions allows for more accurate calculation of fluxes
and yields higher accuracy of the model in comparison with
uniform refinement.

We selected Helium (4He) as a representative of an ideal
gas. Characteristic parameters of He, such as μ and k have
been studied experimentally in a broad range of temperatures
and pressures. In the main text we present simulation results
performed at He parameters for which the Reynolds number

(Re ≈ �p(p0+�p)ML3
y

12RT μ2Lx
) is smaller than 2000 to keep the flow in

the laminar regime.
A set of parameters characterizing a single simulation, and

their range applied in this work consists of cv = 3
2

R
M , cp =

5
2

R
M , M = 4.0026 g mol–1, k from 0.05 to 0.65 W m–1 K–1, μ

from 6 × 10–6 to 9 × 10–5 Pa s, p0 from 0.2 to 2 atm, �p from
0.005 to 50.6 Pa and T0 from 51 to 2500 K. The horizontal
and vertical size of the channel varies between 0.3 m < Lx <

8.4 m and 0.024 m < Ly < 0.532 m.
We have assumed that μ and k for the considered gas

depend only on temperature and are increasing functions.
Based on this assumption we have interpolated their values
from polynomial functions fitted to available experimental
data [22,23] (for details see Table I and Table II in the Supple-
mental Material (SM) [24]). We also assumed that μ = μ(T0)
and k = k(T0) since spatial changes of temperature in the flow
are small (T − T0 < 0.001 K).

For the considered range of parameters (especially small
�p/p0) the medium is weakly compressed. Therefore, sim-
ilarly to incompressible case, we expect flow profile to be
nearly parabolic, yet with small corrections accounting for
compressibility. Also due to compressibility small transverse
velocity in the system is expected. In the case of thermal
properties of the flow we expect transition from uniform inlet
temperature T0 to a fully developed profile only for the longest
channels Lx � 8 m. Note that as a fully developed temperature
profile we define scenario in which temperature distribution
across the channel does not change in its longitudinal direction
T (x, y) = T (x + dx, y).

III. RESULTS

First, we have validated the model against the analytical
solution adopted from Ref. [29], where the velocity profile in
the flow direction is parabolic:

u(y) = �p

Lx

L2
y

2μ

[
1

4
−

(
y

Ly

)2]
, (9)

FIG. 4. The results of simulations with �p
p0

fixed at 2.5 × 10–7 while the values of all the other parameters were changed in every simulation
and varied as follows: �p from 0.001Pa to 0.08 Pa, p0 from 0.2 to 2 atm, T0 from 50 to 2342 K, Lx from 0.5 to 8.4 m and Ly from 0.05 to
0.1 m. �U

U0
− 1

2
�p
p0

is presented as a function of two arbitrarily selected parameters: (a) T0 and (b) p0. Additionally, the separate 11 line segments
were color-coded and enumerated. The range of parameters for each segment is given in Table III in the SM.
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FIG. 5. (a) �U
U0

and (b) �U
U0

− 1
2

�p
p0

in function of �p/p0. �p was changed from 0.005 Pa to 0.163 Pa. The values of other simulation
parameters are constant and equal to p0 = 1 atm, T0 = 600 K, Lx = 0.5 m, Ly = 0.05 m. The red line in is the best quadratic fit with the
equation and coefficients shown in the legend.

and the transverse velocity was v(y) = 0. The following equa-
tion describes the fully developed temperature profile in this
case:

T (y) = T0 − 1

8

�p2L4
y

μkL2
x

[
1

4
−

(
y

Ly

)2]2

. (10)

In order to obtain a fully developed temperature profile
in numerical simulations, we modified the inlet BC for tem-
perature, i.e., we have imposed periodic boundary conditions
for the inlet and outlet temperature. Results for velocity and
temperature profiles for the fully developed case are shown in
Figs. 2(a) and 2(b), respectively. One can see that numerical
results agree with the analytical solution for the typical pres-
sure values considered in this paper (error values are given
in figure caption). The deviation of flow profiles from the
incompressible case is demonstrated in the SM.

A. Compressible Poiseuille flow of ideal gas deviation
from the analytic internal energy equation

By applying lubrication approximation and following the
methodology presented by Schwartz [30] we obtained analyt-
ical solution for the isothermal compressible flow (see the SM
for details):

U

U0
=

1 + �p
p0

+ 1
3

(
�p
p0

)2

1 + 1
2

�p
p0

. (11)

Derivative of internal energy from Eq. (11) w.r.t �p
p0

at small

values of �p
p0

is equal to

∂
(

U
U0

)
∂
(

�p
p0

)
∣∣∣∣∣

�p
p0

=0

= 1

2
. (12)

The above result implies that in the limit of small pressures
the ratio �U/U0 of internal energy stored in NESS to the
energy of ES depends only on �p

p0
with the proportionality

factor 1/2. This result is compared to the dependence of

�U/U0 on �p
p0

from the numerical simulation in Fig. 3. Note
that each point in the plot corresponds to different simulation
parameters. The fitted linear function slightly deviates from
the exact 1

2 slope that indicates that dependence on �p
p0

from
Eq. (11) is not sufficient to calculate U precisely. One can also
see that for the range of pressures considered in this work,
the energy stored in NESS is small (of the order of 0.0001%)
with respect to the system’s energy in equilibrium. Yet this
energy is increasing with �p

p0
and can become significant for

large pressure differences �p or low background pressures p0.
Next, we performed simulations with �p

p0
fixed and all the

other parameters changed in the same range as previously
in Fig. 3. For this simulation, as described in the previous
section, we changed relative tolerance to 1 × 10−8 since, at
this tolerance, the linear dependency of U on �p

p0
converges

to the analytical value with the inversed, squared number of
mesh elements. Therefore, the final values of internal energy
in Fig. 4 were calculated as the intercept from the linear
fit to the data obtained for the three different meshes. The
estimation error of U, marked with error bars on the plots,
is equal to the uncertainty of the intercept.

The results shown in Fig. 3 indicate the existence of vari-
ables other than �p

p0
, that affect internal energy in the studied

system. One can see that despite fixing �p
p0

, U still changes
with other parameters such as T0 [Fig. 4(a)] or p0 [Fig. 4(b)].
The most substantial correction to the linear law is observed
at small temperatures (T0 < 500 K) and channel dimen-
sions (0.5 m < Lx < 1.4 m and 0.05 m < Ly < 0.068 m) as
marked with purple color on the plot (segment 1). Yet these
changes are by six orders of magnitude smaller compared to
the linear dependency (see scales in Figs. 3 and 4).

In order to identify the pressure regime at which additional
variables become important, we have performed a set of sim-
ulations in which we have varied �p while other simulation
parameters have been kept constant. First, let us notice that
the slope of �U/U0 as a function of �p

p0
is closer to exact ½

value in this case, as shown in Fig. 5(a). It seems reasonable
since all the other parameters, and thus, variables were fixed
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in this case, and internal energy change should occur only
due to linear expression from Eq. (11). However, as shown
in Fig. 5(b) a slight discrepancy between analytical and nu-
merical simulation could still be observed.

One can see that there is an additional, negative contri-
bution to the stored energy that is a quadratic function of
�p
p0

. Note that this contribution is much smaller than the
total stored energy (of the order of 0.0015% compared to
the linear term). Yet, as it increases quadratically with �p

p0
it

might become essential for systems exposed to large pressure
differences or at close to vacuum conditions. This result also
suggests that for compressible flow Eq. (11) should have the
following form:

U = U0

[
1 + 1

2

�p

p0
−

(
�p

p0

)2

g

]
, (13)

where g is a function of additional variables that have not yet
been identified. It is worth noting that in Eq. (11), derived
based on lubrication approximation, g is constant (g = 1/12)
so it does not include contribution from effects associated
with, e.g., temperature profile.

B. Natural variables of the internal energy function

In order to find the variables of function g, we rewrite
Eqs. (3)–(5) by normalizing the variables with characteristic
quantities describing the system in equilibrium:

u∗ = u√
RT0
M

, ρ∗ = ρ

ρ0
, p∗ = p

p0
,

x∗ = x

Lx
, y∗ = y

Ly
.

As demonstrated in Fig. S1, the transverse velocity compo-
nents in the considered flow for applied pressures are small.
Thus for simplicity, we assume that the velocity field has only
one component �u = (u(x, y), 0, 0). Note that this assumption
is only used in derivation of scaled equations and not for
numerical simulations. Finally, the dimensionless equations
have the following form (for detailed scaling procedure see

SM):

Ly

Lx

∂ (ρ∗u∗)

∂x∗ = 0, (14)

p0Lx

μ

√
M

RT0
ρ∗u∗ ∂u∗

∂x∗

= − p0Lx

μ

√
M

RT0

∂ p∗

∂x∗ + ∂2u∗

∂ (x∗)2 + L2
x

L2
y

∂2u∗

∂ (y∗)2

+1

3

∂2u∗

∂ (x∗)2 + 1

3

Lx

Ly

∂2u∗

∂x∗∂y∗ , (15)

p0Lx

μ

√
M

RT0
ρ∗u∗ ∂T ∗

∂x∗

= k

μcp

∂2T ∗

∂ (x∗)2 + k

μcp

L2
x

L2
y

∂2T ∗

∂ (y∗)2 + p0Lx

μ

√
M

RT0

2

5
u∗ ∂ p∗

∂x∗

+4

5

(
∂u∗

∂x∗

)2

+ 2

5

(
∂u∗

∂y∗

)2

− 4

15

(
∂u∗

∂x∗

)2

. (16)

In these equations three dimensionless numbers appear:
p0Lx

μ

√
M

RT0
, Ly

Lx
, and μcp

k = Pr. The first one is the analog of

the Reynolds number. The second one describes anisotropy
of the system, and the third one is the Prandtl number (Pr).
One can demonstrate, that combination of these numbers and
the primary variable �p

p0
yields the variable for U of the in-

compressible system from Eq. (2):

�p2L4
y

μkT0L2
x

=
(

�p

p0

)2
(

p0Lx

μ

√
M

RT0

)2(
Ly

Lx

)4 2

5
Pr. (17)

Furthermore, the quadratic dependence on �p
p0

agrees with
the result for compressible fluid shown in Fig. 5(b). As the
result, we expect that the Eq. (13) has four independent vari-

FIG. 6. �U/U0 in the function of (a) �p/p0 and (b) �p. The values of other dimensionless parameters are constant and equal to
p0Lx
μ

√
M

RT0
= 3 × 106, Ly

Lx
= 0.1, Pr = 0.67. The red line in (a) is the best linear fit with the equation and coefficients shown in the legend.

Note that �p is not a proper variable for �U/U0.
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FIG. 7. �U
U0

− 1
2

�p
p0

in the function of (a) Ly

Lx
and (b) Lx . The values of other dimensionless parameters are constant and equal to

�p
p0

= 2.5 × 10–7, p0Lx
μ

√
M

RT0
= 3 × 106, Pr = 0.67. The solid red and dashed blue lines in (a) are the best fit of a second and a fourth-degree

polynomial function. The exact equations and polynomial coefficients are given in Table IV in the SM. Note that Lx is not a proper variable for
�U/U0.

ables and in a general form can be expressed as follows:

U = U0

[
1 + 1

2

�p

p0
+

(
�p

p0

)2

g

(
p0Lx

μ

√
M

RT0
,

Ly

Lx
, Pr

)]
.

(18)

In order to verify if the proposed function variables from
Eq. (18) are correct, we performed four series of simulations,
each with one of the four variables changed, and the remain-
ing ones kept constant. A properly selected variable, when
changed, gives a smooth curve for all the other variables kept
constant. Improper selection of variable leads to the formation
of branches on the internal energy graph. Properly and im-
properly selected variables are shown in Figs. 6(a) and 6(b),
respectively.

We have applied the same procedure to the other vari-

ables from Eq. (18), namely: Ly

Lx
,

p0Lx

μ

√
M

RT0
and Pr. This time

however we were only interested in the contribution to U
from the term dependent on additional variables. Thus we
have subtracted the constant value 1

2
�p
p0

from the ratio of
stored to ES internal energy and traced the following quantity:
�U
U0

− 1
2

�p
p0

. We present the respective charts in Figs. 7(a),

Fig. 8(a), and Fig. 9(a) along with the fitting curves for Ly

Lx

and p0Lx

μ

√
M

RT0
dependence. For comparison, in all the cases

dependence on an arbitrarily chosen variable is shown in
panel (b).

In agreement with Eq. (17), the dependence of U on Ly/Lx

can be described with a fourth-order polynomial. Fitting with
quadratic function also gives a good agreement; however, a
slight discrepancy is visible at small channel aspect ratio. The

dependence on p0Lx

μ

√
M

RT0
is also more accurately described by

the fourth than by the second-order polynomial as shown in
Fig. 8(a). In this case, however, based on incompressible flow

FIG. 8. �U
U0

− 1
2

�p
p0

in the function of (a) p0Lx
μ

√
M

RT0
and (b) p0. The values of other dimensionless parameters are constant and equal to

�p
p0

= 2.47 × 10–7, Ly

Lx
= 0.1, Pr = 0.67. The solid red and dashed blue lines in (a) are the best fit of a second and a fourth-degree polynomial

function. The exact equations and polynomial coefficients are given in Table IV in the SM. Note that p0 is not a proper variable for �U/U0.
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FIG. 9. �U
U0

− 1
2

�p
p0

in the function of Pr for �p
p0

fixed at (a) 2.5 × 10–7 and (b) 2.5 × 10–4. The values of other dimensionless parameters

are constant the same for both cases: p0Lx
μ

√
M

RT0
= 3 × 106, Ly

Lx
= 0.1.

solution, we have expected that quadratic function would be
used. Parameters of the fitted polynomials from Figs. 7 and 8
are given in the SM.

As shown in Fig. 9(a) we have observed that �U
U0

− 1
2

�p
p0

is independent of Pr number for the range of parameters
used previously (Figs. 6–8). Therefore for moderate values
of �p

p0
(< 10−4), Eq. (18) can be simplified to the following

form:

U = U0

[
1 + 1

2

�p

p0
+

(
�p

p0

)2

g

(
p0Lx

μ

√
M

RT0
,

Ly

Lx

)]
. (19)

IV. CONCLUSIONS

In this paper, we have shown that generally the internal
energy of compressible Poiseuille flow of ideal gas in a planar
geometry has the following structure:

U = U0 f

(
�p

p0
,

p0Lx

μ

√
M

RT0
,

Ly

Lx
, Pr

)
. (20)

However, for pressure drop between inlet and outlet of
the channel and absolute pressure between 0.2 and 2 atm
considered in this work, dependence on Pr can be neglected,
and the function from Eq. (20) can be approximated as f =
1
2

�p
p0

+ ( �p
p0

)2g( p0Lx

μ

√
M

RT0
,

Ly

Lx
). The first and dominant argu-

ment of the internal energy function is a linear term �p
p0

and

it is associated with the compressibility of the medium. In this
case, externally applied pressure results in pressure gradient
along the tube but also, according to the equation of state,
increases the density of the medium and as a consequence,
its internal energy. This becomes evident in comparison with
the incompressible scenario where this term vanishes and only
quadratic dependence on �p

p0
is present. We have demonstrated

that the contribution to the energy stored in NESS attributed to
1
2

�p
p0

is six orders of magnitude larger compared to the changes
associated with the other variables. Furthermore, the quadratic
term vanishes as g converges to 0, i.e., for small values of Ly

Lx

and p0Lx

μ

√
M

RT0
as for this regime velocity of the flow is small

(see Fig. S2 in the SM) and only static compression of the gas
contributes to internal energy change. Thus, unless for large
�p or close to vacuum conditions, the energy stored in the
compressible Poiseuille flow of ideal gas can be calculated
with good approximation as �U = 1

2
�p
p0

. This seems espe-
cially important if the hypothesis of a connection between �U
and macroscopic properties of the system is to be explored
experimentally.
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