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ABSTRACT

Brownian motion is essential for describing diffusion in systems ranging from simple to complex liquids. Unlike simple liquids, which consist
of only a solvent, complex liquids, such as colloidal suspensions and the cytoplasm of a cell, are mixtures of various constituents with
different shapes and sizes. Describing Brownian motion in such multiscale systems is extremely challenging because direct and many-body
hydrodynamic interactions (and their interplay) play a pivotal role. Diffusion of small particles is mainly governed by a low viscous character
of the solution, whereas large particles experience a highly viscous flow of the complex liquid on the macro scale. A quantity that encodes
hydrodynamics on both length scales is the wavevector-dependent viscosity. Assuming this quantity to be known—in contrast to most stud-
ies in which the solvent shear viscosity is given—provides a new perspective on studying the diffusivity of a tracer, especially in situations
where the tracer size can vary by several orders of magnitude. Here, we start systematic studies of exact formal microscopic expressions for
the short- and long-time self-diffusion coefficients of a single probe particle in a complex liquid in terms of short-ranged hydrodynamic
response kernels. We study Brownian motion as a function of the probe size, contrasting most theories that focus on self-diffusion as a func-
tion of the crowder volume fraction. We discuss the limits of small and large probe sizes for various levels of approximations in our theory
and discuss the current successes and shortcomings of our approach.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0253886

I. INTRODUCTION

The experimental observation of Brownian motion1–3 and its the-
oretical understanding4–6 is a hallmark in non-equilibrium physics
and led to applications ranging from the microscopic understanding of
diffusion to the predictability of stock markets.7,8 Early work on
Brownian motion focused on describing the motion of a single sus-
pended particle (probe) in a medium composed of solvent particles
that randomly collide with the surface of the probe particle.9,10 For suf-
ficiently long times, the probe enters the diffusive regime, where the
translational and rotational diffusion coefficients of a spherical probe
are, respectively, given by4–6,11

Dt;0 ¼ kBT
6pgsa

; Dr;0 ¼ kBT
8pgsa3

: (1)

Here, kB is the Boltzmann constant, T is temperature, gs is the shear vis-
cosity of the solvent, and a is the particle radius. These expressions—

which can be generalized to the frequency domain12 and more compli-
cated particle shapes13—are widely applied to various systems, some-
times beyond the range of their applicability.12 Indeed, Eq. (1) requires
strict assumptions. For example, the single-particle picture should be
valid (e.g., a suspension at infinite dilution14) and the probe particle
must be macroscopically large compared to the solvent particles. In this
case, the solvent acts as a thermal bath, providing a fluctuating force
that, together with the kinetic energy of the probe, drives the Brownian
motion of the probe.15 When one of these two assumptions breaks
down, more advanced theories are, in principle, needed.

Equation (1) is a valid description for Brownian motion in simple
liquids but breaks down for complex liquids,16–19 such as colloidal sus-
pensions,20–25 the cytoplasm of the cell,26–29 and micellar solutions.30

Such systems are characterized by at least one other type of particle
besides the probe particle and the solvent, which we define as the host
particles (or crowders). The reason is an intricate interplay between
the direct (i.e., conservative) and hydrodynamic forces between probe
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and host particles that are not captured within single-particle theory.31

On short timescales, the probe is subjected to a force field generated by
a fixed configuration of host particles. For longer times, the local envi-
ronment around a probe particle changes because host particles are also
subjected to Brownian motion.32 Therefore, because of the interactions,
a distinction must be made between the short- and long-time self-diffu-
sion coefficients in complex liquids.

For systems that can be carefully experimentally controlled, such
as colloidal suspensions, one can explicitly calculate the short- and
long-time self-diffusion coefficients with systematic (virial-like) meth-
ods for dilute suspensions. Pioneering work by Batchelor33,34 revealed
that the short- and long-time translational diffusion coefficient can be
expanded around the single-particle result as

Dt;S

Dt;0
¼ 1þ aSuþOðuÞ2; Dt;L

Dt;0
¼ 1þ ðaS þ aLÞuþOðu2Þ; (2)

where u denotes the volume fraction of crowders based on their
hydrodynamic radius. Here, the correction aS stems from equilibrium
averaged two-body hydrodynamic interactions, whereas distortion of
the equilibrium distribution due to Brownian motion of the probe and
crowders gives rise to aL. The Oðu2Þ originates from two-body and
three-body HIs.35 Practically, these coefficients can be explicitly com-
puted from the relaxation effect of the crowder-probe pair distribution
function in the presence of an external force, which is easier (but
equivalent) than analyzing the mean square displacement for long
times.36 Equation (2) is valid for arbitrary interaction potentials and
has been specifically studied for hard-sphere,37–39 square-well,40,41 and
charged fluids,42,43 and even extended to arbitrary particle shape and
mixtures.44,45 Surprisingly, for equal-sized hard spheres, the linear in u
contribution is accurate even for dense suspensions, suggesting that at
higher orders in u, cancellation of various terms occur. Generally, for
different-sized hard spheres, such cancellation does not occur.44

Furthermore, Eq. (2) can be straightforwardly extended for rotational
Brownian motion, although typically only the short-time regime is
considered.46

For general dense suspensions, various approximate methods
have been proposed,47–50 but often HIs are neglected to make the
computations tractable.51–53 Furthermore, such methods become
increasingly more computationally difficult to handle for multi-
component mixtures (e.g., biological fluids) and when the macro-
scopic effective viscosity of the complex fluid differs by several
orders of magnitude from the solvent viscosity (e.g., polymer solu-
tions54). It should be noted that the HIs mainly cause the latter
effect. Thus, a uniform, systematic approach for all complex liquids
is desirable, which properly accounts for the most important hydro-
dynamic and direct interactions while not being restricted to one-
component (dilute) colloidal suspensions. Furthermore, most studies
focus on diffusion as a function of crowder concentration. In con-
trast, interesting physics occurs when the probe size is varied (keep-
ing the crowder size constant), especially in the limits of small and
large probe sizes. The functional dependence of diffusion as a func-
tion of probe size plays a central role in this work.

For a typical (average) hydrodynamic radius of a spherical crow-
der R, Eq. (1) is still valid in the short-time regime for a� R, where a
denotes the probe hydrodynamic radius. In the long-time regime, this
relation is only approximately true, with a small correction coming
from having confined diffusion. In the opposite limit, a� R, the

expression can still be used provided that gs is replaced by the effective
zero-frequency macroscopic viscosity g0eff for long-time diffusion, and
the infinite-frequency effective viscosity g1eff for short-time diffusion.
Any good theory should satisfy these limits as a constraint. The inter-
polation between these two extremes is well described using empirical
but physically motivated formulas that fit well with experimental data
for various types of complex liquids55,56 (e.g., obtained with fluores-
cence correlation spectroscopy57–59) However, such expressions are
not obtained from first principles; therefore, the connection with
microscopic information of the system (e.g., the type of direct interac-
tions) is lacking.

A study using Batchelor’s approach for unequal-sized spheres
reveals that the correct limits as a function of a were found for dilute
suspensions, see Ref. 60, and for simplified models of polydisperse sys-
tems in Ref. 61. In this case, the macroscopic effective viscosity satisfies
the Einstein formula,62 geff ¼ gs½1þ 2:5uþOðu2Þ�, for the zero-
frequency and the infinite-frequency cases.63,64 In Ref. 60, it was found
that Dt;L=Dt;0 had a well-defined limit for a!1 only when probe-
host HIs were included. Furthermore, the limit converged to the cor-
rect value of gs=geff when at least Oðr�8Þ multipoles in the expansion
of the mobility tensor were included. This is surprising because the
leading order correction to gs in geff can be represented as a one-body
contribution, which suggests that the leading order is independent of
hydrodynamic and direct interactions. Therefore, we conclude that an
expansion around the single-particle solution [Eq. (2)] is an inefficient
way of computing diffusion coefficients as a function of the probe size
for complex liquids where g1;0

eff =gs � 101 � 104, which deviate
strongly from a single-particle reference state.

FIG. 1. Scheme of solvent picture vs complex-liquid picture for describing self-
diffusion. In the solvent picture (first row), self-diffusion is described by the
Brownian motion of a tagged probe particle (with radius a) in a solvent with shear
viscosity gs and host particles/crowders (with typical radius R). In the short-time
regime, there is only Brownian motion of the probe particle, and the host particles
are stationary (imagine situation without red arrows). In the long-time regime, crow-
ders also diffuse. When the probe is varied as a function of size, we hypothesize
that gs is not the proper transport property that should be used to describe diffusion
because it only encodes the microscopic length scale of flow in a complex liquid. In
the complex-liquid picture, the diffusion is governed by g1ðkÞ in the short-time
regime and g0ðkÞ in the long-time regime. These quantities describe the flow of the
complex liquid on all length scales.
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In previous work, an important step toward a description that is
valid for all complex liquids has been made by Makuch et al.65 The sit-
uation is schematically depicted in Fig. 1. Instead of an explicit descrip-
tion of the complex liquid in terms of a solvent described by gs and
crowders, the microscopic information of the host particles was inte-
grated out to obtain a quantity called the wavevector-dependent vis-
cosity gðkÞ, which is experimentally accessible and can be defined for
any complex liquid. In Ref. 65, this idea has been utilized with ad hoc
approximations to describe complex liquids. However, describing dif-
fusion in terms of a given wavevector-dependent viscosity, opens new
possibilities for a systematic study of self-diffusion in complex liquids.
In particular, the early results of Batchelor can act as an inspiration for
such computations. In this paper, we discuss the role of direct and HIs
on the self-diffusion coefficient of a spherical probe particle in a com-
plex liquid, by studying the lowest-order contributions in the short-
and long-time diffusive regime.

This paper is organized as follows. Our starting point is to derive
the probability distribution function within linear response theory that
we will use to integrate out the host particles (Sec. II). This probability
distribution is used to derive the effective Stokes equations in terms of
a wavevector-dependent viscosity, describing the flow of a complex liq-
uid on various length scales (Sec. III). This quantity needs to be consid-
ered in the infinite-frequency g1ðkÞ or zero-frequency g0ðkÞ regime
depending on the application. From the linear response theory, we
derive expressions for the short- and long-time self-diffusion coeffi-
cients for a given value of gs (Sec. IV) in terms of the Oseen tensor.
Using the effective flow equations, we then derive expressions for the
self-diffusion constant of a probe in terms of g0ðkÞ and g1ðkÞ—now
assumed to be given quantities—in the short and long-time regime,
respectively (Sec. V). To highlight the potential functionality of our
formalism, we will use systematic approximations (Sec. VI) to arrive at
approximate expressions for the translational and rotational self-
diffusion coefficient for a spherical probe in the short-time (Sec. VII)
and long-time regime (Sec. VIII). For demonstration purposes, we will
evaluate these expressions when the probe only interacts with crowders
via steric interactions (Sec. IX). Furthermore, we discuss the limits for
a=R!1 and a=R! 0 for short- and long-time diffusion coeffi-
cients. We then summarize our most important results (Sec. X) and
discuss our conclusions and the remaining open problems (Sec. XI).

II. PROBABILITY DISTRIBUTION WITHIN LINEAR
RESPONSE THEORY

Consider a complex liquid consisting of (not necessarily identical)
host particles of various shapes and sizes immersed in an incompress-
ible solvent. Each host particle is characterized by its center-of-mass
position and internal (rotational and vibrational) degrees of freedom.
We model each host particle as a series of interacting spherical
beads to simplify notation and not explicitly handle the internal
degrees of freedom. For example, a linear polymer chain can be mod-
eled by a bead-spring model.66,67 The total phase space of the problem
can thus be cast in terms of the center-of-mass positions of beads,
RN :¼ ðR1;…;RNÞ, whereN denotes the total number of beads.

The probability distribution PðRN ; tÞ to find a fixed configuration
RN at time t satisfies the continuity equation

@

@t
PðRN ; tÞ þ

XN
i¼1

@

@Ri
� UiPðRN ; tÞ
� �

¼ 0; (3)

where Ui denotes the Smoluchowski velocity, which only has meaning
in the probabilistic sense. For time scales larger than the viscous relaxa-
tion time of the solvent, we have that

Ui ¼
XN
j¼1

lttijðRNÞ � Fj þ
ð
drCt

iðr;RNÞ � v0ðrÞ; (4)

with lttijðRNÞ denotes the translational-translational mobility tensor
and Ct

iðr;RNÞ denotes the translational convection kernel for station-
ary viscous flow.68 Both hydrodynamic quantities are rank-two tensors
for which we assume stick boundary conditions on the surfaces of the
host particles. Furthermore, v0 is the ambient flow field defined as the
fluid flow field without host particles (N ¼ 0). We decompose the total
force Fi acting on particle i ¼ 1;…;N as

Fi ¼ � @UðRNÞ
@Ri

� kBT
@

@Ri
ln PðRN ; tÞ
� �

þ Fexti : (5)

Here, UðRNÞ ¼P
i<j /ijðjRi � RjjÞ is the total interaction potential

expressed as a sum of pair potentials. The first term thus describes con-
servative forces, the second term Brownian forces, and the third term
describes the external forces acting on the particles. We are strictly
interested in computing the self-diffusion coefficient, for which it is
sufficient to consider the steady state probability distribution P1ðRNÞ
for large times, which is independent of t. From Eqs. (3)–(5), it follows
that69,70

DNP
1ðRNÞ ¼

XN
i¼1

@

@Ri
�
("XN

j¼1
lttijðRNÞ � Fextj

þ
ð
drCt

iðr;RNÞ � v0ðrÞ
#
P1ðRNÞ

)
; (6)

where the N-body Smoluchowski differential operator is given by

DNð…Þ ¼
XN
i;j¼1

@

@Ri
� lttijðRNÞ � kBT

@

@Rj
þ @UðRNÞ

@Rj

" #
ð…Þ:

Equation (6) admits a formal solution within linear response theory71,72

around the equilibrium distribution PeqðRNÞ ¼ exp½�bUðRNÞ�=Q with
Q the configurational integral. We find

P1ðRNÞ
PeqðRNÞ ¼ 1þ L�1N

XN
i¼1

@

@Ri
� @bUðRNÞ

@Rj

" #

�
ð
drCt

iðr;RNÞ � v0ðrÞ þ
XN
j¼1

lttijðRNÞ � Fextj

2
4

3
5; (7)

with the adjoint Smoluchowski operator given by

LNð…Þ ¼
XN
i;j¼1

kBT
@

@Ri
� @UðRNÞ

@Ri

� �
� lttijðRNÞ � @

@Rj
ð…Þ (8)

and L�1N its inverse. See Ref. 72 for time-dependent generalizations of
Eq. (7). This manuscript only needs two specific cases of Eq. (7). First,
inserting Fexti ¼ 0 for all i in Eq. (7) defines the probability distribution
P1V ðRNÞ. This probability distribution is relevant when no external
forces act on the host particles, but there is an ambient fluid flow field.
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Second, inserting v0ðrÞ ¼ 0 and Fextj ¼ dj1F in Eq. (7) defines the
probability distribution P1F ðRNÞ. In this case, there is no ambient flow,
but an external force F acts on just one particle, which we define as the
probe particle. As we shall see, there is a relation between both aver-
ages in the thermodynamic limit.

III. EFFECTIVE STOKES EQUATIONS FOR FLOW ON
VARIOUS LENGTH SCALES

Here, we follow the derivation in Ref. 73, where the infinite-
frequency length-scale dependent flow equations were considered.
However, we extend the computation to include also the zero-
frequency response. Consider a fixed configuration RNf g of host par-
ticles in an ambient flow field v0ðrÞ but in the absence of external
forces. We define the fluid flow field outside the particles as vf ðr;RNÞ,
which we take to be incompressible,r � vf ðr;RNÞ ¼ 0. In the creeping
flow regime, the conservation of linear momentum gives

gsr2vf ðr;RNÞ � rpðr;RNÞ ¼ 0; (9)

where we implicitly assumed time scales much longer than the
viscous relaxation time. Equation (9) is solved assuming stick bound-
ary conditions on the particle surfaces, with particle velocities
Ui þ Xi � ðr� RiÞ for r on the surface of particle i. As was shown by
Bedeaux and Mazur,74 Eq. (9) can be extended to be valid inside the
host particles

gsr2vðr;RNÞ � rpðr;RNÞ ¼ �f indðr;RNÞ; (10)

which defines the induced force density f indðr;RNÞ. For Eq. (10), no
boundary conditions on the particle surfaces need to be imposed.
Furthermore, vðr;RNÞ equals vf ðr;RNÞ when r is outside any of the
host particles and equals Ui þ Xi � ðr� RiÞ when r is inside particle
i. Therefore, vðr;RNÞ is the fluid velocity field for the entire complex
liquid including the regions inside the particles. The solution to
Eq. (10) is given by

vðr;RNÞ ¼ v0ðrÞ þ
ð
dr0Gðr� r0Þ � f indðr;RNÞ; (11)

where GðrÞ ¼ ðIþ r̂r̂Þ=ð8pgsrÞ denotes the Oseen tensor. The mac-
roscopic flow of the complex liquid in the long-time limit is thus deter-
mined by hvðr;RNÞiV, where

h…iV ¼
ð
dRN P1V ðRNÞð…Þ: (12)

Our goal is to determine the equations that govern hvðr;RNÞiV. First,
we have the incompressibility condition r � hvðr;RNÞiV ¼ 0. To
determine the equation for the conservation of linear momentum, we
express the induced force density as

f indðr;RNÞ ¼�
ð
dr0 Ẑðr; r0;RNÞ � v0ðr0Þ;

þ
XN
i¼1

~C
t
iðr;RNÞ � �@UðRNÞ

@Ri
� kBT

@

@Ri
ln P1V ðRNÞ� �� �

:

(13)

Here, we introduced the convective extended friction kernel
Ẑðr; r0;RNÞ75 and the translational transfer kernel ~C

t
iðr;RNÞ.75 It can

be shown that the transfer kernel and convection kernel are related,

i.e., ~C
t
i;ab ¼ Ct

i;ba.
75 Averaging Eq. (13) using Eq. (12), we find to linear

order in v0ðrÞ

hf indðr;RNÞiV ¼
ð
dr0 TVðr; r0Þ � v0ðr0Þ; (14)

with an ambient flow response kernel that can be decomposed as
TVðr; r0Þ ¼ Tins

V ðr; r0Þ þ Tret
V ðr; r0Þ. Therefore, we find that the induced

force density has a short-time response due to an ambient flow field
governed by the instantaneous response kernel76

Tins
V ðr; r0Þ ¼ h�Ẑðr; r0;RNÞieq; (15)

with

h…ieq ¼
ð
dRN PeqðRNÞð…Þ: (16)

The order matters in Eq. (16) because we will consider averages over
quantities containing differential operators. In particular, the long-
time response is governed by the sum of the instantaneous and
retarded response kernel, where the latter is given by76

Tret
V ðr; r0Þ ¼ kBT

*XN
i;j¼1

~C
t
iðr;RNÞ � @

 

@Ri
L�1N

@

@Rj
� @bUðRNÞ

@Rj

" #

� Ct
jðr0;RNÞ

+
eq

: (17)

Here, the left-derivative @
 

Ri acts on each quantity left of it, which
includes PeqðRNÞ. To derive Eq. (17), we used

kBT
@Peq RNð Þ

@Ri
¼ � @UðRNÞ

@Ri
Peq RNð Þ: (18)

By averaging Eq. (11), we eliminate v0ðrÞ from Eq. (14) and express
hf indðr;RNÞiV in terms of hvðr;RNÞiV. Inserting this expression in Eq.
(10) results in the integrodifferential equation

gsr2hvðr;RNÞiV�rhpðr;RNÞiVþ
ð
dr0R0ðr; r0Þ � hvðr0;RNÞiV ¼ 0;

(19)

where

R0ðr; r0Þ ¼ ½ðIþ TVGÞ�1TV�ðr; r0Þ: (20)

Here, the superscript “0” denotes a zero-frequency response kernel.
Furthermore, we defined the kernel product between two kernels
Aðr; r0Þ and Bðr; r0Þ as

AB½ �abðr; r0Þ ¼
ð
dr00Aakðr; r00ÞBkbðr00; r0Þ;

with Einstein summation convention implied over Greek indices.
Furthermore, we defined the identity kernel as ½I�abðr; r0Þ
¼ ½I�abdðr� r0Þ ¼ dabdðr� r0Þ and inverse AA�1 ¼ A�1A ¼ I.

Equation (19) can be simplified for translationally invariant and
isotropic systems. In this case, Rðr; r0Þ ¼ Rðr� r0Þ and we introduce

the Fourier transform as ~R
0ðkÞ ¼ Ð

drR0ðrÞe�ik�r. Equation (19) in
Fourier space can then be expressed as
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�g0ðkÞk2h~vðk;RNÞiV þ ikh~pðk;RNÞiV ¼ 0; (21)

with the zero-frequency wavevector-dependent viscosity

g0ðkÞ ¼ gs �
1
2k2

tr½ðI� k̂ k̂Þ � ~R0ðkÞ�: (22)

The fundamental solution of Eq. (19) is, therefore, G0
eff ðr; r0Þ

¼ ½GðI� RGÞ�1�ðr; r0Þ, with Fourier transform

~G
0
eff ðkÞ ¼

I� k̂ k̂
g0ðkÞk2 : (23)

Therefore, we have shown that the viscous response of a complex liq-
uid on various length scales is governed by g0ðkÞ at long time scales.

We close this section with a few remarks. Equation (22) describes
the long-time (i.e., zero frequency) wavevector-dependent viscosity.
However, the analysis would have been the same for deriving the mac-
roscopic flow equations in the short-time (i.e., infinite-frequency)
regime, provided one takes TV ¼ Tins

V in Eq. (20), which we define as
R1ðr; r0Þ. This defines the infinite-frequency wavevector viscosity

g1ðkÞ ¼ gs �
1
2k2

tr½ðI� k̂ k̂Þ � ~R1ðkÞ�; (24)

with corresponding effective Green’s function defined by the Fourier
transform,

~G
1
eff ðkÞ ¼

I� k̂ k̂
g1ðkÞk2 : (25)

In general, if we had used the time-dependent many-body
Smoluchowski equation, we would have obtained a macroscopic flow
equation governed by a wavevector and frequency-dependent gðk;xÞ,
for which only the special cases of zero-frequency and infinite fre-
quency are relevant in this paper.

Additionally, we notice from Eq. (24) that gðkÞ at short length
scales (k!1) reduces to the solvent shear viscosity gs, whereas
for k! 0, we define it as the effective viscosity g1eff governing the flow
of a complex liquid on the macroscopic scale at short time scales
and at long time scales by g0eff . In other words, the macroscopic flow
of the complex liquid is described by g1;0

eff r2hvðr;RNÞiV
�rhpðr;RNÞiV ¼ 0, as is well known.

IV. SHORT AND LONG-TIME SELF-DIFFUSION
COEFFICIENTS IN THE SOLVENT PICTURE

To study self-diffusion, we consider a fixed configuration RNf g
in the absence of an ambient flow field (v0ðrÞ ¼ 0). We select particle
i ¼ 1 to be the probe particle and it is the only particle that is subjected
to an external force F. For this specific setting, the velocity field
describing the solid-body motion inside a particle and the fluid flow
outside the particle is

vðr;RNÞ ¼
ð
dr0Gðr� r0Þ � f indðr0;RNÞ; (26)

where

f indðr;RNÞ ¼
XN
i¼1

~C
t
iðr;RNÞ �

�
� @UðRNÞ

@Ri
þ di1F

� kBT
@

@Ri
ln P1F ðRNÞ� ��

: (27)

Here, P1F ðRNÞ is defined at the end of Sec. II. Equations (26) and (27)
should be contrasted with Eqs. (11) and (13). The fluid velocity field is
defined in Eqs. (26) only in the probabilistic sense due to the presence
of the Brownian force, which is given in the long-time limit by
hvðr;RNÞiF.

Because we imposed stick boundary conditions, the probe veloc-
ity can be extracted as hUiF ¼ hvðR1 þ ar̂;RNÞiF and we find to lin-
ear order in F, after shifting integration variables

U ¼
ð
dr0Gðar̂ � r0Þ � TFðr0Þ

� �
� F; (28)

with the force-response kernel defined via,

TFðrÞ � F ¼ hf indðrþ R1;R
NÞiF: (29)

The response is governed by the local kernel TFðrÞ ¼ Tins
F ðrÞ þTret

F ðrÞ,
where the instantaneous force kernel is

Tins
F ðrÞ ¼ h~C

t
1ðrþ R1;R

NÞieq; (30)

and retarded force response kernel is given by76

Tret
F ðrÞ ¼ kBT

*XN
i;j¼1

~C
t
iðrþ R1;R

NÞ

� @
 

@Ri
L�1N

@

@Rj
� @bUðRNÞ

@Rj

" #
� lttj1ðRNÞ

+
eq

: (31)

From symmetry, it follows that the factor between square brackets in
Eq. (28) is proportional to I. Together with the fluctuation-dissipation
theorem, we thus find that the long-time translational diffusion coeffi-
cient is

Dt;L ¼ kBT
3

tr
ð
dr0Gðar̂ � r0Þ � TFðr0Þ

� �
: (32)

For the short-time translational diffusion coefficient, there is no
retarded response,

Dt;S ¼ kBT
3

tr
ð
dr0Gðar̂ � r0Þ � Tins

F ðr0Þ
� �

: (33)

We define Eqs. (32) and (33) as the solvent picture of computing the
translational diffusion coefficient because the expressions depend
explicitly on the solvent viscosity gs through the appearance of GðrÞ.
Finally, it should be noted that Eqs. (32) and (33) are equivalent to per-
haps more widely used expressions for the short- and long-time trans-
lational diffusion coefficients, namely,

Dt;S ¼ kBT
3

trhltt11ðRNÞieq (34)

and

Dt;L ¼ Dt;S þ kBT
3

tr

(
kBT

*XN
i;j¼1

ltt1iðRNÞ

� @
 

@Ri
L�1N

@

@Rj
� @bUðRNÞ

@Rj

" #
� lttj1ðRNÞ

+
eq

)
: (35)
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These formal expressions can be obtained from analysis of the mean
square displacement and the corresponding memory function.77

Furthermore, they are equivalent to Eq. (2), which ultimately stems
from linear-response theory combined with a virial-like expansion.33,34

The same computation can be performed for rotational
diffusion. In this paper, we only consider the result for the short-time
regime. Now due to the stick boundary conditions, we have hXieq �
ðar̂Þ ¼ hvðR1 þ ar̂Þieq and we find

Dr;SðaÞ ¼ kBT
2

tr r̂ � � �
ð
dr0Gðar̂ � r0Þ � h~Cr

1ðr0 þ R1;R
NÞieq

� �
;

(36)

where � denotes the Levi-Civita tensor and ~C
r
1ðr;RNÞ denotes the

rotational transfer kernel. We note that Eq. (36) is equivalent to

Dr;S ¼ kBT
3

trhlrr11ðRNÞieq; (37)

with lrrij ðRNÞ the rotational-rotational mobility tensor, assuming again
stick boundary conditions.

V. SHORT AND LONG-TIME SELF-DIFFUSION
COEFFICIENTS IN THE COMPLEX-LIQUID PICTURE

We obtained Eqs. (32), (33), and (36) in terms of a convolution
of the Oseen tensor with a hydrodynamic quantity. We will show that
this representation is useful for introducing the effective Greens func-
tions defined in Sec. II, which have Fourier representations Eqs. (23)
and (25) depending on the timescale of interest. The general philoso-
phy is that any equilibrium average of a hydrodynamic quantity (e.g.,
the mobility tensor and the transfer kernel) can be decomposed into
short- and long-range parts. The hydrodynamic response kernel with
the long-range part subtracted defines the irreducible part of this quan-
tity.78 We show that the long-range part can be absorbed in GðrÞ,
which naturally leads to expressions of the diffusion coefficient in
terms of g1;0ðkÞ. The decomposition of a response kernel in a reduc-
ible and irreducible part has been well studied, and we use results dis-
cussed in such works.76,78–80 For example, the transfer kernel of the
probe particle can be decomposed as

h~Ca
1ðrþ R1;RNÞieq ¼ ða ¼ t; rÞð
dr0 ðIþ hẐciirreq;cGÞ�1ðr; r0Þh~C

t
1ðr0 þ R1;R

NÞiirreq :
(38)

Here, Ẑc is the convective extended friction kernel of the complex liq-
uid, i.e., Ẑcðr; r0Þ ¼ Ẑðr; r0;R2;…;RNÞ. The essential part is that this
quantity does not depend on the probe particle, and the equilibrium
average of this quantity is over ensembles of the complex liquid with-
out the probe (denoted by “eq,c”). Furthermore, we have the
decomposition

hẐciirreq;c ¼ hẐcieq;cðI�GhẐcieq;cÞ�1: (39)

In the thermodynamic limit, we identify hẐcieq;c ¼ Tins
V and find an

alternative expression of Eq. (33)

Dt;S ¼ kBT
3

tr
ð
dr0G1eff ðar̂ � r0Þ � Tins;irr

F ðr0Þ
� �

: (40)

Using similar decomposition formula for the retarded response ker-
nels, we find in the thermodynamic limit

TFðrÞ ¼
ð
dr0 ðI� Tirr

V GÞ�1ðr; r0ÞTirr
F ðr0Þ (41)

and

Tirr
V ¼ TVðI�GTVÞ�1: (42)

We stress that TV is the response kernel of the complex liquid in the
thermodynamic limit, which does not include the probe. We conclude
that

Dt;L ¼ kBT
3

tr
ð
dr0G0

eff ðar̂ � r0Þ � Tirr
F ðr0Þ

� �
(43)

and we call this the complex-liquid representation of Eq. (32).
Similarly, the complex-liquid representation of the rotational diffusion
coefficient within our model is

Dr;SðaÞ ¼ kBT
2

tr r̂ � � �
ð
dr0G1eff ðar̂ � r0Þ � h~Cr

1ðr0 þ R1;R
NÞiirreq

� �
;

(44)

which we only consider in the short-time regime.

VI. EXPANSIONS OF THE TRANSFER KERNEL AND
SUM RULES

For computing diffusion coefficients in the complex-liquid pic-
ture, the hydrodynamic quantities lttijðRNÞ and ~C

a
1ðr;RNÞ (a¼ t,r) are

the most important. Although mobility tensors have been calculated
extensively for various systems, little information is available in the
literature on the transfer kernel. In principle, one can compute this
quantity from a multiple scattering expansion81 (e.g., within the
multipole picture82). For translations, we find for the one-body
contribution

~C
t
iðr;RNÞ ¼ dðjr� Rij � aiÞ

4pa2i
þ � � � (45)

and for rotations

~C
r
i ðr;RNÞ ¼ 3

8pa3i
dðjr� Rij � aiÞ r� Ri

jr� Rij � � � I
� 	

þ � � � : (46)

To the best of our knowledge, the higher contributions have never
been computed explicitly.

An alternative expansion for the translational transfer kernel
can be derived from its symmetry with the translational convection
kernel. An expansion of the translational convection kernel due to
Felderhof70 can be found from an analysis of a sphere in pure con-
vective motion, i.e., no forces or torques are acting on the sphere. In
this case,

Ui ¼
ð
drCt

iðr;RNÞ � v0ðrÞ: (47)

The form of Ct
iðr;RNÞ is not unique: in Ref. 70, Felderhof assessed the

form of the translational convection kernel in terms of suitable moments
of v0ðrÞ defined in the center of the particle. In this case, we find
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Ct
iðr;RNÞ ¼ dðr� RiÞI�

XN
j¼1

ltdij ðRNÞ � rdðr� RjÞ þ � � � ; (48)

where higher order terms are proportional to dyads of the form
r…rdðr� RjÞ. The translational-dipolar mobility tensor ltdij that
appears in Eq. (48) has the following symmetry properties83:

ltdij;abc ¼ ltdij;acb; ltdij;abb ¼ 0; ltdij;abc ¼ �ldtji;bca:
Together with the property ~C

t
i;ab ¼ Ct

i;ba, we thus find

~C
t
iðr;RNÞ ¼ dðr� RiÞIþ

XN
j¼1
rdðr� RjÞ � ldtji ðRNÞ þ � � � : (49)

The advantage of Eq. (49) over Eq. (45) is that ldtij has been computed
in the literature.84–87 However, there is a subtle point. In the develop-
ment of the effective Stokes equations (Sec. III), we used a ~C

t
iðr;RNÞ

that results in a fluid velocity field which reproduces the solid-body
motion inside of a particle. If we choose the center of the particle as a
reference point [Eq. (49)], we may lose this property. Therefore, Eq.
(49) should be considered as an approximation of the expansion Eq.
(45). However, Eq. (49) allows for tractable computations that give sat-
isfactory results in various limiting situations, as we shall see. We
hypothesize that a minimal model for self-diffusion in complex liquids
is thus contained in the expansion of Eq. (49), which we apply in the
remaining sections. It should be noted that the first term in Eq. (49)
constitutes the approximation made in Ref. 65 for Tirr

F based on empir-
ical grounds. Here, we thus gave an argument for this approximation
and provided a minimal extension.

Furthermore, Eq. (49) satisfies exact sum rules for the various
response kernels introduced in Sec. V. It follows from Eq. (49) thatÐ
dr ~C

t
iðr;RNÞ ¼ I, and therefore we find the exact sum rulesð

drTins
F ðrÞ ¼ I;

ð
drTret

F ðrÞ ¼ 0: (50)

For the latter relation, we used that�PN
i¼1 @RiUðRNÞ ¼ 0 by applica-

tion of Newton’s third law together with pair-wise additivity of
UðRNÞ. Sum rules for ~C

r
i ðr;RNÞ are considered in Sec. VII B.

VII. EXPLICIT COMPUTATION FOR SHORT-TIME
DIFFUSION

The remaining complication for explicit evaluation of Eqs. (40),
(43), and (44) is the irreducibility constraint on the response kernels.
In this work, we consider only leading-order contributions for which
the irreducibility constraint can be ignored; in particular, we mainly
focus on one-body contributions from all hydrodynamic quantities in
Tirr
F ðrÞ. Specifically, on the level of transfer kernels, we only keep the

first term in the expansion of Eq. (49).

A. Short-time translational diffusion

Evaluation of Eq. (40) with the first term in the expansion of Eq.
(49) gives

Dt;SðaÞ ¼ kBT
3p2

ð1
0
dk

j0ðkaÞ
g1ðkÞ ; (51)

which was also derived in Ref. 65. Note that if instead of Eq. (49) the
first term in the expansion of Eq. (45) was used, we obtain the same

formula as Eq. (51), but with j0ðkaÞ replaced by j0ðkaÞ2. Beenakker
found a similar result [see Eq. (9.4) in Ref. 88], but with g1ðkÞ
replaced by the zeroth order contribution in its expansion in terms of
correlation functions. However, we hypothesize that Eq. (51) is a better
choice because it was shown in Ref. 65 that inversion of this expression
gives physical values for the wavevector-dependent viscosity even for
complex liquids for which g0eff=gs is large. When expanding the result
around the exact one-body transfer kernel (the case with j0ðkaÞ2), we
found unphysical (divergent) values for the wavevector-dependent vis-
cosity. Therefore, it suggests that Eq. (49) is a better starting point than
Eq. (45).

At this point, it is good to discuss the limiting behavior of Eq.
(51) as a function of a. First, it is clear that in the single-particle limit
(only probeþsolvent), we retrieve the single-particle result Eq. (1).
This result is immediate upon using g1ðkÞ ¼ gs and

Ð1
0 dk j0ðkaÞ

¼ p=ð2aÞ. Other essential limits for a complex liquid are the small-
and large-probe limits. For a!1, we follow the reasoning of Ref. 88
for approximating integrals of the type in Eq. (51). For a large, the larg-
est contribution in the integral of Eq. (51) stems from the interval
0 < k 	 1=a where g1ðkÞ is approximately constant. Therefore, we
can approximate the integrand by its zero wavevector, infinite fre-
quency value g1eff . Thus, we find for a large

Dt;SðaÞ 
 kBT
6pg1effa

; ða largeÞ: (52)

Note that many multipoles (at least Oðr�8Þ) on the level of the mobil-
ity tensor were needed in Ref. 60 to obtain this result. In our computa-
tion, however, the correct limit is obtained from the first-order term in
the expansion of Eq. (49). This highlights the potential usefulness of
computations within the complex-liquid picture because it suggests
that just a few multipoles are sufficient. Additionally, we can take the
low-volume fraction limit, for which we have gðkÞ ¼ gsð1þ uf ðkRÞ
þ � � �Þ with f ðkRÞ ¼ 5=2� ð3=350ÞðkRÞ4 þ � � �.88 Taking k! 0, we
conclude that Eq. (52) satisfies also the proper limit for u small. A sim-
ilar argument exists for the limit of small probes, and we find

Dt;SðaÞ 
 kBT
6pgsa

; ða smallÞ: (53)

B. Short-time rotational diffusion

Using similar arguments as Felderhof70 for obtaining Eq. (49), we
can derive an expression for the first term in the expansion for the
rotational convection kernel. We consider purely convective motion
(i.e., particles are force and torque free)

Xi ¼
ð
drCr

i ðr;RNÞ � v0ðrÞ: (54)

In the absence of HIs and using the center of the tagged particles as a
reference point, we find that Xi ¼ ð1=2Þ½r � v0ðrÞ�r¼Ri

, from which
we conclude that Cr

i ðr;RNÞ ¼ ð1=2Þ� � r½dðr� RiÞ� þ :: and there-
fore by using that ~C

r
i;ab ¼ Cr

i;ba, we find

~C
r
i ðr;RNÞ ¼ � 1

2
� � r dðr� RiÞ½ � þ � � � : (55)

Anticipating that higher order terms depend on dyads of dðr� RiÞ,
we find the exact sum rule
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ð
dr � � r � ~Cr

i ðr;RNÞ ¼ �I: (56)

For computing diffusion, we insert the first term of this expansion in
Eq. (44), and we find

Dr;SðaÞ ¼ kBT
4p2a

ð1
0
dk

j1ðkaÞk
g1ðkÞ : (57)

In Ref. 65, the same formula was found on phenomenological grounds
by using

~C
r
i ðr;RNÞ 
 3

8pb3i
dðjr� Rij � biÞ r� Ri

jr� Rij � � � I
� 	

; (58)

with bi ! 0. We thus support the phenomenological approximation
from Ref. 65. Using that limk#0

Ð1
0 dk kj1ðkaÞe�kk ¼ p=ð2a2Þ, we find

that Eq. (57) satisfies the single-particle limit Eq. (1). Furthermore, we
find from a similar reasoning as for translations that

Dr;SðaÞ 
 kBT
8pg1effa3

; ða largeÞ (59)

and

Dr;SðaÞ 
 kBT
8pgsa3

; ða smallÞ: (60)

Inspection of Eq. (57) with Eq. (51) reveals the relation

Dr;SðaÞ ¼ � 3
4a

d
da

Dt;SðaÞ; (61)

which has been tested in Ref. 65 to simulation data. Due to the lack of
data, the comparison was made for diffusion coefficients acting on dif-
ferent time scales, and therefore a systematic deviation was found.

VIII. EXPLICIT COMPUTATION FOR LONG-TIME
TRANSLATIONAL DIFFUSION

For computation of the long-time translational diffusion, we need
to evaluate the irreducible part of Eq. (31). For simplicity, we assume
that all host particles are identical. Because g0ðkÞ contains the effect of
host particles to all orders (which do not include the probe), we
hypothesize that it is sufficient to approximate lttijðRNÞ ¼ ð6pgsaiÞdijI
þðN � 1ÞlttijðR1;R2Þ. We will only discuss two-body contributions to
the mobility tensor for which the irreducibility constraint can be
dropped. Using this series of approximations, we find a natural
decomposition

Tret;irr
F ðrÞ ¼ T

ð1Þ
F ðrÞ þ T

ð2Þ
F ðrÞ þ � � � ; (62)

with

T
ðiÞ
F ðrÞ ¼ kBTðN � 1Þ dðr� Ri1Þ @

 

@Ri
LðR1;R2Þ

* +
2

; (63)

where Rij ¼ Ri � Rj. The average is defined as

h…i2 ¼
ð
dR1

ð
dR2 P

ð2Þ
eq ðR1;R2Þð…Þ; (64)

with the marginal probability distribution

Pð2Þeq ðR1;R2Þ ¼
ð
dR3…

ð
dRN PeqðRNÞ:

Note that the left-derivative in Eq. (63) acts also on Pð2Þeq ðR1;R2Þ. The
vectorial function L is defined by the differential equation

L2 LðR1;R2Þ½ � ¼
X2
j¼1

@

@Rj
� @b/12ðR12Þ

@Rj

" #
� lttj1ðR1;R2Þ: (65)

The above decomposition shows that the long-time translational diffu-
sion coefficient can be decomposed as

Dt;L ¼ Dð0Þ þ Dð1Þ þ Dð2Þ; (66)

where Dð1Þ comes from using the probe transfer kernel ði ¼ 1Þ in Eq.
(63) and Dð2Þ from the host transfer kernel ði ¼ 2Þ in Eq. (63). The
quantity Dð0Þ comes from the instantaneous part of Tins;irr

F ðrÞ in Eq.
(43), and the result is

Dð0Þ ¼ kBT
3p2

ð1
0
dk

j0ðkaÞ
g0ðkÞ : (67)

This expression should not be confused with Dt;S, which is governed
by g1ðkÞ, see Eq. (51). Next, we consider Dð1Þ and Dð2Þ, which are the
contributions to the retarded response from the probe and host trans-
fer kernel, respectively.

A. Contribution from probe transfer kernel

We observe that Tð1ÞF ðrÞ / dðrÞ, and straightforward computa-
tion gives

Dð1Þ ¼ kBT
3p2

ð1
0
dk

j0ðkaÞ
g0ðkÞ vðaÞ; (68)

with

v ¼ u
R3

ð1
0
ds s2g 012ðsÞLðsÞ: (69)

Here, u is the volume fraction of host particles based on their hydro-
dynamic radius R. Furthermore, we used the translational and rota-
tional invariance (there is no external potential) to write LðR1;R2Þ
¼ bLðjR1 � R2jÞR̂12 and Pð2Þeq ðR1;R2Þ ¼ g12ðjR1 � R2jÞ=V2, where
g12ðrÞ is the probe-host radial distribution function of the bulk system.
We conclude that LðsÞ quantifies to linear order in F the distortion of
the probe-host pair distribution function in the presence of an external
force. The correction Dð1Þ coincides with the correction computed in
the solvent picture when HIs are neglected. However, due to the pres-
ence of g0ðkÞ, we conclude that Dð1Þ is a correction where probe-host
HIs to Dt;L are neglected on the level of the transfer kernel, but not on
the level of mobility, see Eq. (65). We call the contributions Dð0Þ þDð1Þ
“effective single-particle approximation” (ESP). Note that for compar-
ing the effects of approximate mobility tensors on Dð0Þ þ Dð1Þ no
explicit form of gð0ÞðkÞ is needed. Knowledge on the quantity v is
therefore sufficient since it does not depend on k.

As an additional remark, we see that the integrand in Eq. (69) is
proportional to g 012ðsÞ. From this observation, we conclude that in the
computation of LðsÞ, we can take the mobility tensor to arbitrary order
and omit the irreducibility constraint. The reason is that for two-body
contributions, the irreducibility constraint just replaces g12ðrÞ by
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h12ðrÞ ¼ g12ðrÞ � 1.76 Both quantities have the same derivative. We
will use this property in Sec. IXB.

B. Contribution from host transfer kernel

The computation of Dð2Þ is more involved. First, we find an
expression for Tð2ÞF ðrÞ

T
ð2Þ
F ðrÞ ¼ �q

ð
ds

@

@s
g12ðsÞdðrþ sÞ

� �
LðsÞŝ

� �
: (70)

Partial integration and using that

@

@s
LðsÞŝ½ � ¼ @L

@s
ŝŝ þ LðsÞ

s
ðI� ŝŝÞ (71)

gives

T
ð2Þ
F ðrÞ ¼ qg12ðrÞ @L

@r
r̂ r̂ þ LðrÞ

r
ðI� r̂ r̂Þ

� �
: (72)

After some algebra, we find the expression

Dð2Þ ¼ kBT
3p2

u
R3

ð1
0

dk
j0ðkaÞ
g0ðkÞ

ð1
0
ds s2g12ðsÞ

� L0ðsÞ j0ðksÞ þ j2ðksÞ½ � þ LðsÞ
s

2j0ðksÞ � j2ðksÞ½ �
� �

: (73)

The quantities Dð1Þ and Dð2Þ can be explicitly computed when /12ðrÞ
is specified. We perform such calculations for steric interactions in
Sec. IX.

IX. CALCULATION FOR STERIC INTERACTIONS
A. Single-particle mobility approximation

First, we consider the case where lttijðsÞ ¼ ð6pgsaiÞ�1dijI with
a1 ¼ a and a2 ¼ R. In this case, LðsÞ satisfies the differential equation

r2LðsÞ � 2LðsÞ
s2

� �
� b/012ðsÞL0ðsÞ ¼

R
aþ R

b/012ðsÞ; (74)

with a prime denoting differentiation to the argument. Multiplying
this expression with g12ðsÞ 
 exp½�b/12ðsÞ�, we find

1
s2

d
ds

s2g12ðsÞ dLds

� �
� 2g12ðsÞLðsÞ

s2
¼ R

aþ R
g 012ðsÞ (75)

to be solved under suitable boundary conditions and specified /12ðrÞ.
For purely steric (additive hard-core) repulsions, we have

/12ðsÞ ¼
1; s < aþ R;

0; s > aþ R:

(
(76)

Using that g12ðsÞ ¼ 0 for s < aþ R and g12ðsÞ ¼ 1 otherwise, and by
integrating Eq. (75) from aþ R� � to aþ Rþ � and letting � # 0, we
find the boundary condition

L0ðxþ0 Þ ¼
R

aþ R
; (77)

where xþ0 ¼ lim�#0ðaþ Rþ �Þ. Together with the boundary condition
Lðs!1Þ ¼ 0, we find for steric interactions

LðsÞ ¼ �R
2
ðaþ RÞ2

s2
; (78)

and from Eqs. (69) and (32)

Dð1Þ ¼ � kBT
3p2

u
2

1þ a
R

� 	2 ð1
0
dk

j0ðkaÞ
g0ðkÞ : (79)

In Sec. VIIIA we argued that Dð0Þ þ Dð1Þ approximate Dt;L when
probe-host HIs are neglected on the level of the transfer kernel (called
ESP), so we identify

DESP
t;L ðaÞ ¼

kBT
3p2

ð1
0
dk

j0ðkaÞ
g0ðkÞ 1� u

2
1þ a

R

� 	2
" #

: (80)

For a small, we thus find that

DESP
t;L

Dt;0ðaÞ 
 1� u
2

1þ a
R

� 	2

þ � � � : (81)

We test this expression to recent simulations (where also host-host
HIs are neglected), see Fig. 2. We find excellent agreement with the
data, including the correct limit Dt;L=Dt;0 ! 1� u=2 for a! 0. In
Ref. 89, the data were fitted using a phenomenological approach.
However, here, we find the proper limit from first principles without
fit parameters. Furthermore, our computation reveals that the point
limit is robust even for high-volume fractions due to the presence of
g0ðkÞ. This is not obvious within the solvent picture. The opposite
limit, a!1, however, reveals that Eq. (80) diverges when scaled to
Dt;0. This is the same conclusion as Ref. 60, where no proper macro-
scopic probe limit was found when probe-host HIs are neglected.

In the next step, we include some of the HIs by computing Dð2Þ,
assuming a single-particle mobility and one-body host transfer kernel.
Using Eq. (78) in Eq. (73) gives

FIG. 2. Long-time translational diffusion coefficient scaled to the single-particle
result for small probe sizes a. The red data points are taken from Brownian dynam-
ics simulations of Ref. 89 without HIs. The full blue line indicates the result from our
theory in the k !1 limit without HIs (Dð0Þ þ Dð1Þ with single-particle mobility ten-
sor and only probe transfer kernel).
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Dð2Þ ¼ kBT
p2

u
2

1þ a
R

� 	2 ð1
0
dk

j0ðkaÞ
g0ðkÞ

j1ðkðaþ RÞÞ
kðaþ RÞ : (82)

This contribution incorporates part of the host-probe HIs on the level
of the transfer kernel because it depends on the positions of probe and
host, which might be counterintuitive since it is derivable from the first
term in Eq. (49). To have a consistent treatment of all probe-host HIs,
we need to systematically include all two-body effects: (i) the contribu-
tions stemming from the second term in Eq. (49) and (ii) terms com-
ing from a two-body mobility tensor which enter Eq. (65). We focus
only on the latter effect, because for the first effect the irreducibility
constraint poses many technical difficulties that warrants a deeper
analysis.

B. Rotne–Prager–Yamakawa approximation

We can restore some of the probe-host HIs by using the full
2-body mobility tensor when solving Eq. (65). When applied to correct
the value for Dð1Þ, we can drop the irreducibility constraint as we
discussed at the end of Sec. VIIIA. The minimal, positive definite
extension of the single-particle mobility is given by the Rotne–Prager–
Yamakawa (RPY) approximation.90,91 Within this approximation, the
self-mobility lttii (i ¼ 1; 2) vanishes, and there is only a non-zero cross
mobility

ð6pgsaÞltt12ðrÞ ¼ Ac
12ðrÞr̂r̂ þ Bc

12ðrÞðI� r̂r̂Þ;
where for r > aþ R,

Ac
12ðrÞ ¼

3a
2r
� 1
2
aða2 þ R2Þ 1

r3
þOðr�7Þ;

Bc
12ðrÞ ¼

3a
4r
þ 1
4
aða2 þ R2Þ 1

r3
þOðr�11Þ:

(83)

Within the RPY approximation, Eq. (65) can be solved with a bound-
ary condition that the probability current vanishes when the two
spheres overlap. From the obtained LðsÞ, we compute v using Eq. (69).
We find

v ¼ � ðaþ RÞ3ð2aþ RÞð4aþ RÞðaþ 4RÞu
ð8a2 þ 43aRþ 8R2Þða4 þ 2a3Rþ 2aR3 þ R4Þ : (84)

We find for a! 0 that v! 1=2 is similar to the v when a single-
particle mobility tensor is assumed. Insertion in Eq. (68) gives a cor-
rected Dð1Þ. The effect of this contribution for small probes is investi-
gated in Fig. 2, dotted line. Again, the point limit is not affected as
compared to our previous results.

For the macroscopic probe limit, we find v!�u as a!1.
We conclude that the obtained v parameter gives a well-defined value
of Dt;L=Dt;0 for large probes. However, the value of this limit is

lim
a!1

Dt;L

Dt;0
¼ gs

g0eff
ð1� uÞ; (85)

where experimentally, it was found that the limit should (at least
approximately) be equal to gs=g

0
eff .

Surprisingly, we find the same limit even when higher-order
hydrodynamic multipoles are included for the mobility tensor in the
computation of Dð1Þ. This is, in a sense, not surprising: the RPY tensor
emerges from one reflection in a multiple scattering expansion of the
mobility tensor. For consistency, we thus need to include all

contributions to Tret
F ðrÞ containing one reflection in the hydrodynamic

quantities. Specifically, we have not considered the second term in Eq.
(49) which contains ltdij . The result for one reflection of ltdij has been
explicitly computed86; however, we need to take the irreducible part
when inserting this quantity in the retarded response kernel.
Furthermore, the inclusion of such a term will also contribute to the
short-time translational diffusion coefficient, which will make Dt;S

explicitly dependent on the interaction potential via the equilibrium
distribution. It would be interesting to consider this contribution for a
consistent treatment of probe-host HIs and investigate whether a
proper a!1 limit arises. However, this is beyond the scope of the
current work.

C. Ad-hoc improvement

One way to remedy the problem of the macroscopic-probe limit
is to insist on consistency with the low-u result, which has been com-
puted with Eq. (2). In this calculation, the long-time contribution to
translational diffusion aL is captured in the so-called Brownian and
interaction velocity contributions. Comparison of this method with
our calculation reveals that Eq. (69) is the same result of the interaction
velocity correction in the absence of HIs (in this case, the Brownian
velocity vanishes). Within the RPY approximation, the interaction
velocity has a different form than Eq. (69), but the Brownian velocity
still vanishes. Based on this observation, we propose that within our
series of approximations, a suitable candidate for the v parameter
within the RPY approximation is

v ¼ u
R3

ð1
0
dr s2g 0ðsÞLðsÞ 1� Ac

12ðsÞ
� �

: (86)

For hard spheres, we then find

v ¼ � R2ð2aþ RÞ2ð4aþ RÞðaþ 4RÞu
ð8a2 þ 43aRþ 8R2Þða4 þ 2a3Rþ 2aR3 þ R4Þ ; (87)

which does satisfy the macroscopic limit v! 0 for a!1. A com-
parison of the three approximations is given in Fig. 3 for various
approximations on v. We only performed the comparison up to Dð1Þ

for which a comparison on the level of the v parameter is sufficient,
i.e., no explicit form of g0ðkÞ is needed. However, for computing Dð2Þ

for all probe sizes, g0ðkÞ needs to be specified and is therefore not con-
sidered in Fig. 3. The correct macroscopic limit for this ad hoc
improvement of Dð1Þ suggests that a fully consistent treatment of
probe-host HIs on the level of one reflection is sufficient to have a cor-
rect macroscopic probe limit. Furthermore, it can be seen that all
approximations for Dð1Þ give similar results for a=R sufficiently small.

X. SUMMARY OF MAIN RESULTS AND OPEN
PROBLEMS

The main results of this paper are formally exact expressions for
the short- and long-time translational diffusion coefficients in terms of
the viscosity functions g1;0ðkÞ, which characterize the length-scale
dependent viscous response on different time scales. We assumed in
this work that the viscosity function g1;0ðkÞ is a given quantity. At
this point, one could argue that the lowest-order expansion of Tirr

F ðrÞ is
insufficient for complex liquids and that at least all two-body terms
should be included. We hypothesize that due to the implicit resumma-
tion over crowders—that is contained in the viscosity functions
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g1;0ðkÞ—, that two-body contribution should be sufficient for all
hydrodynamic quantities.

In particular, we found a formula for Dt;L in the absence of
probe-host HIs on the level of the transfer kernel

DESP
t;L ðaÞ ¼

kBT
3p2

ð1
0
dk

j0ðkaÞ
g0ðkÞ 1þ vðaÞ½ � (88)

and we analyzed the probe-dependent interaction factor vðaÞ for hard
spheres. The results compared well with simulation results in the
small-probe limit. Furthermore, for the short-time regime, we found
proper limits in the case of a! 0 and a!1. The remaining prob-
lem lies in the limit a!1, where we were not able to obtain satisfac-
tory results in the long-time regime. We hypothesize that probe-host
HIs are essential for this limit, as was already hinted at in previous
works by other authors for dilute complex liquids.60 In this work, we
have only partially taken into account the probe-host HIs by consider-
ing the contributions for which the irreducibility constraint can be
dropped. For future work, it is interesting to systematically analyze all
the probe-host HIs on the level of a two-body approximation to a
given (multipole) order and see whether our hypothesis of a low-
density approximation on the level of TFðrÞ is correct.
XI. CONCLUSION AND OUTLOOK

This work underlies the basic framework for computing self-
diffusion coefficients in the so-called complex liquid picture where
either g1ðkÞ (for the short-time regime) or g0ðkÞ (for the long-time
regime) are given quantities. In contrast to the picture where the sol-
vent viscosity gs is given, the complex-liquid picture should be more
adequate for describing diffusion in complex liquids at various length
scales. Here, the central philosophy is that all hydrodynamic and direct

interactions that do not include the probe are effectively resummed
and thus contained in g1;0ðkÞ. Here, g1;0ðkÞ contains information on
the viscous flow response on various length scales, which is essential
when diffusion is studied as a function of the probe size. Various
length scales of the flow are not contained in Eq. (2) because the
expansion is performed around the single-particle solution, which is
governed by the solvent shear viscosity gs. Our results suggest that for
the quantity that remains, the irreducible kernel Tret;irr

F ðrÞ, only a few
terms in the expansion are needed to describe experimentally relevant
situations. The tradeoff of needing fewer terms in our approach is that
two hydrodynamic quantities are required, namely the transfer kernel
and the mobility tensor, whereas in established methods only the
mobility tensor is needed.

The complex-liquid picture was already introduced in previous
work.65 Here, we started a systematic study of short- and long-time
self-diffusion within this framework. We have shown how the quanti-
ties g1;0ðkÞ relate to macroscopic flow so that, indeed, they can be
viewed as a length-scale dependent viscous response. Furthermore, we
gave support for the phenomenological approximations used in
Ref. 65 for Tirr

F ðrÞ. Here, we used the symmetry between the purely
convective motion of particles in ambient flow and the motion of par-
ticles under an external force in a quiescent fluid. The zeroth order
contribution in the expansion gives approximations similar to the ones
in Ref. 65.

To demonstrate the functionality of our calculation, we have
explicitly computed the first terms in the expansion of the diffusion
coefficients for additive hard spheres. We obtained satisfactory results
for the small-probe limit for translational and rotational diffusion in
the short- and long-time regimes. For the large-probe limit, we
obtained satisfactory results only in the short-time diffusive regime.
For long-time translational diffusion, we hypothesize that including at
least one reflection in multiple scattering expansions of hydrodynamic
quantities is indispensable to describe probe-host HIs and have a
proper macroscopic probe limit for long-time translational diffusion.
It is good to realize that elucidating the requirements of achieving such
a limit is only possible via theory. Currently, simulations cannot
address the large-probe limit due to computational limitations.

Our results open many directions for further work besides find-
ing the minimal level of approximations with a physical macroscopic
probe limit. Possible directions include analyzing the diffusion coeffi-
cient from the mean-squared displacement by direct computation in
terms of the wavevector-dependent viscosity. Other directions include
investigating the effects of particle shape and activity in the context of
biological fluids (for example, the cytoplasm). Finally, an analysis of
the effective Stokes equation for a given g1;0ðkÞ could be an interest-
ing direction for efficiently performing otherwise resource-costly simu-
lations of particles with HIs, like Stokesian dynamics.92
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FIG. 3. Comparison of various approximations to the quantity 1þ v, which is
defined as the ratio between the long-time translational diffusion coefficient within
the approximation Dt;L ¼ Dð0Þ þ Dð1Þ and Dð0Þ. Here, Dð1Þ is approximated based
on how the mobility tensor is treated. For the case “no HI,” we assumed a single-
particle mobility tensor, RPY indicates the mobility tensor within the RPY approxima-
tion, and “RPY corr” indicates the proposed result, which is consistent with the low-
density result in the long-time regime. The full lines indicate volume fraction
u ¼ 0:1 and the dashed lines u ¼ 0:2. All three approximations give similar
results for small a=R, but only the “RPY corr” case gives the proper macroscopic
limit (see main text).
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