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Suspension of spherical particles.
Stokes equations for NV spheres (stick boundary conditions).
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v(7) - velocity field of suspension,
u(r), Qr) - velocity and angle velocity of i-th particle,
;(7) - induced forces (on the surface of i-th particle).
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One particle problem
One particle in an ambient flow (7).
> One-particle friction kernel
— G \@( ()
7 Forces induced on the surface of particle
Solution:
T(7) = o(F) + / di' G(7 — ) f(7)
G(7) = 87r1777“(1 + 77) - Oseen tensor.
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Many particle problem.
Suspension velocity field
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¢ ¢ The flow acting on particle ¢ (induced by remaining
P ° particles)
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Many-particle friction kernel:
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Series of scattrering sequences
Scattering sequences.
Exemplary sequence: e'@
Zo(5)G(52)Z0(2)G(24) Zo(4) G (43) Zo(3) G (32) Z0(2) G (21) Zo(1) D
Diagramatic representations of scattering sequences.:
Nodal structure:
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Average over probability distribution for configurations of particles
Averaged force density: (f(R)) = / d R'(Z(R, R))vo(R)
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Effective viscosity.
Relation between induced forces density and the average flow.
A ~ N\ —1
(v) = v+ G{f) (=2 (1+62) ©
é A\ Y _J/
(f) = (Z)vo (2
Effective viscosity is given immediately by matrix element of (Z >irr.
(Z)"™(R,R') 5 20G(R — R Zyno(R — R') — ZyG(R — R') Zyn?
. n9 (E — R ) — n% - two-particle correlation function
Exemplary term in (Z)"*
2G(R-R)ZyWR-F)= f
Correlation function. /
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Irreducibility.

Articulation line
\
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Reduciblgrdiagrams Irreducibrerdiagrams
(Z >irr consists of all irreducible diagrams (without articulation line).
Morover all transport coefficients (sedimentation, self and collective diffusion) may be
expressed by similar (with irreducible structure) kernels.
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Two-particle terms.
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Virial expansion.
Effective viscosity: n.q = n{l+ %gb + NP2 v+ .. .}
- nonoverlap ~ 50% __ three-particle nonoverlapping configurations ~ 5%
A %
 overlap ~ 50% > overlap(three-particle)+ full two-particle ~ 95%
Sedimentation coefficient: K =1+ A\ + bed” + . ..
For sequences, which starts and ends on different particles:
\ - nonoverlap = 6% - three-particle nonoverlapping configurations &~ 1%
" overlap ~ 94% N overlap(three-particle)+ full two-particle ~ 99%
Remarks:
1) Overlapping configurations of particles give the dominant contribution to transport coefficients.
2) Negligible contribution from three-particle nonoverlapping configurations.
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Approximated method.

Foundation:

(Z >irr for nonoverlapping configurations.

We derived the exact relations, which allow to calculate <Z >irr for overlapping configurations by means of

(Z)IT for nonoverlapping configurations = (Z)'T for overlapping configurations.

The method consists in introducing closure relation, by the following approximation:

(Zypa = (2 =[] 4

may be expressed imediately by (Z >irr kernel.
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Motivation for introducing this closure relation are remarks placed above (frame ”Virial expansion”).
Indeed, the relation implicates neglecting of three(and more)-particle contributions of nonoverlapping

configurations. Moreover, by dint of the exact relations, one can calculate <Z >irr . Transport coeflicients,
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